Editorial

551 Are You What You Eat or What Your Mother Ate or Both?
Stephen J. Freedland
See related article, p. 553

Research Articles

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>553</td>
<td>Early Exposure to a High Fat/High Sugar Diet Increases the Mammary Stem Cell Compartment and Mammary Tumor Risk in Female Mice</td>
<td>Isabel U. Lambertz, Linjie Luo, Thomas R. Berton, Scott L. Schwartz, Stephen D. Hursting, Claudio J. Conti, and Robin Fuchs-Young</td>
</tr>
<tr>
<td>563</td>
<td>Prospective Evaluation of Multimodal Optical Imaging with Automated Image Analysis to Detect Oral Neoplasia In Vivo</td>
<td>Timothy Quang, Emily Q. Tran, Richard A. Schwarz, Michelle D. Williams, Nadarajah Vigneswaran, Ann M. Gillenwater, and Rebecca Richards-Kortum</td>
</tr>
<tr>
<td>571</td>
<td>Effect of Green Tea Supplements on Liver Enzyme Elevation: Results from a Randomized Intervention Study in the United States</td>
<td>Zherming Yu, Hamed Samavat, Allison M. Dostal, Renwei Wang, Carolyn J. Torkelson, Chung S. Yang, Lesley M. Butler, Thomas W. Kessler, Anna H. Wu, Mindy S. Kurzer, and Jian-Min Yuan</td>
</tr>
<tr>
<td>580</td>
<td>In Silico Systems Biology Analysis of Variants of Uncertain Significance in Lynch Syndrome Supports the Prioritization of Functional Molecular Validation</td>
<td>Ester Borras, Kyle Chang, Mala Pande, Amanda Cuddy, Jennifer L. Bosch, Sarah A. Bannon, Maureen E. Mork, Miguel A. Rodriguez-Bigas, Melissa W. Taggart, Patrick M. Lynch, Y. Nancy You, and Eduardo Vilar</td>
</tr>
<tr>
<td>598</td>
<td>Topically Applied Carvedilol Attenuates Solar Ultraviolet Radiation Induced Skin Carcinogenesis</td>
<td>Kevin M. Huang, Sherry Liang, Steven Yeung, Etuajie Oiyemhonlan, Kristian H. Cleveland, Cynus Parsa, Robert Orlando, Frank L. Meyinskens Jr, Bradley T. Andresen, and Ying Huang</td>
</tr>
</tbody>
</table>

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

The five-year survival rate for patients with oral cancer remains low, in part because diagnosis often occurs at a late stage. The standard of care for evaluation of oral lesions—visual examination under white light illumination—is strongly dependent on the expertise and experience of the clinician. There is a need for tools that can aid clinicians by facilitating early, objective identification of oral neoplasia. Multi-modal optical imaging has the potential to help identify oral neoplasia in real time. Implementation of automated image analysis can improve the accessibility and utility of adjunctive optical imaging technologies. The cover shows a micrograph of an image (circle at left) acquired in vivo from an oral lesion site using a fiberoptic fluorescence microscope; it also shows the corresponding processed image (circle at right) that was automatically generated in real time at the point-of-care. The field of view is 720 microns in diameter and the bright dots are cell nuclei. Nuclei classified as abnormal by the processing algorithm are outlined in red, while nuclei classified as normal are outlined in yellow. The automated algorithm gave an overall prediction of “neoplastic” for this oral site; subsequent pathology results indicated severe dysplasia. See the article by Quang et al. (beginning on page 563) for more information.
Cancer Prevention Research

10 (10)

Updated version
Access the most recent version of this article at:
http://cancerpreventionresearch.aacrjournals.org/content/10/10

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.