Historical Perspective

Cancer Prevention Research: Back to the Future. Scott M. Lippman ... 503

Perspective

Epigallocatechin 3-Gallate and Green Tea Catechins: United They Work, Divided They Fail.
Ann M. Bode and Zigang Dong ... 514
Perspective on Fu et al., p. 531

Minireview

Molecular Profiles of Finasteride Effects on Prostate Carcinogenesis.
Jin Li and Jeri Kim .. 518

Commentary

Edwina N. Scott, Andreas J. Gescher, William P. Steward and Karen Brown ... 525

Research Articles

Huijing Fu, Jun He, Fan Mei, Qi Zhang, Yukihiro Hara, Seto Ryota, Ronald A. Lubet, Ruth Chen, Da-Ren Chen and Ming You ... 531

Synergistic Growth Inhibition of Squamous Cell Carcinoma of the Head and Neck by Erlotinib and Epigallocatechin-3-Gallate: The Role of p53-Dependent Inhibition of Nuclear Factor-κB.
A.R.M. Ruhul Amin, Fadlo R. Khuri, Zhuo (Georgia) Chen and Dong M. Shin ... 538

Modulation by Phenethyl Isothiocyanate and Budesonide of Molecular and Histopathologic Alterations Induced by Environmental Cigarette Smoke in Mice.
Francesco D’Agostini, Luca Mastracci, Alberto Izzotti, Roumen Balansky, Tanya M. Pennisi, Vernon E. Steele and Silvio De Flora .. 546

The Effects of Varying Dietary Carbohydrate and Fat Content on Survival in a Murine LCaP Prostate Cancer Xenograft Model.

3,3’-Diindolylmethane Induction of p75NTR-Dependent Cell Death via the p38 Mitogen-Activated Protein Kinase Pathway in Prostate Cancer Cells.
Fatima S. Khwaja, Shehla Wynne, Isadora Posey and Daniel Djakiew .. 566

A Novel Sulindac Derivative That Does Not Inhibit Cyclooxygenases but Inhibits Colon Tumor Cell Growth and Induces Apoptosis with Antitumor Activity.
Gary A. Piazza, Adam B. Keeton, Heather N. Tinsley, Bernard D. Gary, Jason D. Whitt, Bini Mathew, Jose Thaiparambil, Lori Coward, Gregory Gorman, Yonghe Li, Brahma Sani, Judith V. Hohrath, Yulia Y. Maxuitenkon and Robert C. Reynolds .. 572

3,3’-Diindolylmethane Enhances the Efficacy of Butyrate in Colon Cancer Prevention through Down-Regulation of Survivin.
Namrata Bhatnagar, Xia Li, Yue Chen, Xudong Zhou, Scott H. Garrett and Bin Guo .. 581

Noninvasive Detection of Candidate Molecular Biomarkers in Subjects with a History of Insulin Resistance and Colorectal Adenomas.
Chen Zhao, Ivan Ivanov, Edward R. Dougherty, Terryl J. Hartman, Elaine Lanza, Gerd Bobe, Nancy H. Colburn, Joanne R. Lupton, Laurie A. Davidson and Robert S. Chapkin .. 590
About the Cover

The cover features a 3-dimensional graph of the distribution of the sizes of particles of polyphenol E (Poly E), a mixture of epigallocatechin 3-gallate (EGCG) and at least four other catechins found in green tea. Poly E is the form of green tea commonly used in clinical trials. The particle sizes of Poly E (blue bars) and Poly E stripped of EGCG, or Poly E-light (gray bars), are virtually the same, with a geometric median diameter of 0.13 µm and geometric standard deviation of 1.6 µm. The 0.13 µm diameter of Poly E is many times smaller than any other reported to date, optimizing its aerosolized delivery to and absorption by lung tissue. As reported in this issue of the journal, aerosolized Poly E was more effective than was aerosolized Poly E-light (or EGCG alone) in reducing tumor multiplicity in a model of chemically induced mouse-lung tumorigenesis. The difference in efficacy between Poly E and Poly E-light most likely was due to differences in biological, not physical, properties since the particle sizes of the two compounds were similar. See articles by Fu et al. (beginning on page 531) and Bode and Dong (beginning on page 514) for more information.
Cancer Prevention Research

2 (6)

Updated version
Access the most recent version of this article at:
http://cancerpreventionresearch.aacrjournals.org/content/2/6

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.