Contents

Perspectives

Emerging Molecular Technologies for Identifying the Risk of Second Cancers.
Susan T. Mayne and Stephen B. Gruber ... 605
Perspective on Wu et al., p. 617

Food Extracts for Chemoprevention: Quo Vadis? Frank L. Meyskens, Jr. 608
Perspective on Thomasset et al., p. 625

Commentary

Dietary Chemopreventive Phytochemicals: Too Little or Too Much? Elena P. Moiseeva
and Margaret M. Manson ... 611

Research Articles

Novel Susceptibility Loci for Second Primary Tumors/Recurrence in Head and Neck Cancer
Patients: Large-Scale Evaluation of Genetic Variants. Xifeng Wu, Margaret R. Spitz, J. Jack Lee,
Scott M. Lippman, Yuanqing Ye, Hushan Yang, Fadlo R. Khuri, Edward Kim, Jian Gu, Reuben Lotan,
and Waun K. Hong .. 617

Pilot Study of Oral Anthocyanins for Colorectal Cancer Chemoprevention. Sarah Thomasset,
David P. Berry, Hong Cai, Kevin West, Tim H. Marczylo, Debbie Marsden, Karen Brown,
Ashley Dennison, Giuseppe Garcea, Andrew Miller, David Hemingway, William P. Steward,
and Andreas J. Gescher .. 625

Chemoprevention of Lung Squamous Cell Carcinoma in Mice by a Mixture of Chinese Herbs.
Yian Wang, Zhongqiu Zhang, Joel R. Garbow, Doug J. Rowland, Ronald A. Lubet, Daniel Sit,
Francis Law, and Ming You .. 634

The Interaction of a High-Fat Diet and Regular Moderate Intensity Exercise on Intestinal
Polyp Development in Apc^{Min/+} Mice. Kristen A. Baltgalvis, Franklin G. Berger,
Maria Marjorette O. Peña, J. Mark Davis, and James A. Carson 641

Anti-inflammatory Action of Pterostilbene Is Mediated through the p38 Mitogen-Activated
Protein Kinase Pathway in Colon Cancer Cells. Shiby Paul, Agnes M. Rimando, Hong Jin Lee,
Yan Ji, Bandaru S. Reddy, and Nanjoo Suh .. 650

Lower Risk of Cervical Intraepithelial Neoplasia in Women with High Plasma Folate and
Sufficient Vitamin B12 in the Post-Folic Acid Fortification Era. Chandrika J. Piyathilake,
Maurizio Macaluso, Ronald D. Alvarez, Walter C. Bell, Douglas C. Heimburger,
and Edward E. Partridge .. 658

Topical Treatment with Black Raspberry Extract Reduces Cutaneous UVB-Induced
Carcinogenesis and Inflammation. F. J. Duncan, Jason R. Martin, Brian C. Wulff, Gary D. Stoner,
Kathleen L. Tober, Tatiana M. Oberszyn, Donna F. Kusewitt, and Anne M. Van Buskirk 665

Tea Polyphenols Decrease Serum Levels of Prostate-Specific Antigen, Hepatocyte Growth
Factor, and Vascular Endothelial Growth Factor in Prostate Cancer Patients and Inhibit
Production of Hepatocyte Growth Factor and Vascular Endothelial Growth Factor In <i>vitro</i>
Jerry McLarty, Rebecca L.H. Bigelow, Mylinh Smith, Don Elmajan, Murali Ankem,
and James A. Cardelli .. 673
About the Cover

The graph featured on the cover depicts the receiver operating characteristics (ROC) curves of three multivariate models for predicting second primary tumors (SPTs) and/or recurrence of head-and-neck cancer. The patient cohort came from a randomized phase III trial in patients curatively treated for stage-I-or-II head and neck cancer. Model 1 incorporated established prognostic clinical variables (tumor site, stage, treatment) alone (green curve); model 2 combined these with epidemiologic variables (smoking pack-years; blue curve); and model 3 combined the clinical and epidemiologic with genetic variables (12 chromosomal single-nucleotide polymorphisms and one mitochondrial single-nucleotide polymorphism; red curve). The trend of one curve's improvement over another is depicted by a shift to the left. The measure of this improvement, however, is derived by comparing the models' areas under the curve (AUCs). Shown by AUCs of 0.61 (clinical variables alone) and 0.64 (clinical plus smoking variables), adding smoking data improved the clinical model very little. Adding both smoking and genetic variables in model 3, however, produced an AUC of 0.84, a significant increase over the model 2 AUC (bias-corrected 95% confidence interval, 0.15–0.27, based on 10,000 bootstrap samples) and thus a significantly improved ability to predict cancer. This work underscores the importance of incorporating germline genetic variation data with clinical and other risk-factor data into models for predicting clinical outcomes and cancer risk. See articles by Wu et al. (beginning on page 617) and Mayne and Gruber (beginning on page 605) for more information. Head and neck art credit: MedicalRF.com/Getty Images.
Cancer Prevention Research

2 (7)

Updated version
Access the most recent version of this article at:
http://cancerpreventionresearch.aacrjournals.org/content/2/7

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.