Atorvastatin and Celecoxib in Combination Inhibits the Progression of Androgen-Dependent LNCaP Xenograft Prostate Tumors to Androgen Independence

Xi Zheng¹, Xiao-Xing Cui¹, Zhi Gao¹, Yang Zhao¹, Yong Lin²,³, Weichung Joe Shih²,³, Mou-Tuan Huang¹, Yue Liu¹, Arnold Rabson²,³, Bandaru Reddy¹, Chung S. Yang¹,⁴, and Allan H. Conney¹,⁴

Abstract

Epidemiology studies suggest that statins and nonsteroidal anti-inflammatory drugs reduce the risk of prostate cancer. In the present study, LNCaP cells were cultured in regular medium containing fetal bovine serum or in medium supplemented with charcoal-stripped fetal bovine serum to mimic androgen deprivation treatment. We found that atorvastatin (Lipitor) or celecoxib (Celebrex) treatment of LNCaP cells cultured in regular or androgen-depleted medium inhibited growth and stimulated apoptosis. A combination of atorvastatin and celecoxib was more effective than either agent alone. In animal studies, severe combined immunodeficient mice were injected s.c. with LNCaP cells in Matrigel. After 4 to 6 weeks, mice with LNCaP tumors (about 0.6 cm wide and 0.6 cm long) were surgically castrated and received daily i.p. injections of vehicle, atorvastatin (10 μg/g body weight/d), celecoxib (10 μg/g/d), or a combination of atorvastatin (5 μg/g/d) and celecoxib (5 μg/g/d) for 42 days. In all groups, the androgen-dependent LNCaP tumors regressed initially in response to castration, but the tumors eventually progressed to androgen independence and started to grow. Treatment of the mice with atorvastatin or celecoxib alone suppressed the regrowth of LNCaP tumors after castration. A combination of low doses of atorvastatin and celecoxib had a more potent effect in inhibiting the growth and progression of LNCaP tumors to androgen independence than a higher dose of either agent alone. Our results indicate that administration of a combination of atorvastatin and celecoxib may be an effective strategy for the prevention of prostate cancer progression from androgen dependence to androgen independence. Cancer Prev Res; 3(1); 114–24. ©2010 AACR.

Introduction

Prostate cancer is one of the leading causes of death among men in the United States (1). Despite aggressive efforts toward early detection and treatment, the mortality rate for prostate cancer continues at a high level (1, 2). Early-stage prostate cancer requires androgen for growth and thus responds to androgen deprivation therapy (3, 4). However, eventually the disease progresses to an androgen-independent state that is unresponsive to androgen ab-

Introduction

Prostate cancer is one of the leading causes of death among men in the United States (1). Despite aggressive efforts toward early detection and treatment, the mortality rate for prostate cancer continues at a high level (1, 2). Early-stage prostate cancer requires androgen for growth and thus responds to androgen deprivation therapy (3, 4). However, eventually the disease progresses to an androgen-independent state that is unresponsive to androgen ab-

Authors’ Affiliations: ¹Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey; ²Center for Advanced Biotechnology and Medicine and the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, Piscataway, New Jersey; ³Division of Biometrics, School of Public Health, University of Medicine and Dentistry of New Jersey; and ⁴Cancer Institute of New Jersey, New Brunswick, New Jersey

Corresponding Author: Xi Zheng and Allan H. Conney, Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854. Phone: 732-445-4940; Fax: 732-445-0687; E-mail: xizheng@rci.rutgers.edu or aconney@rci.rutgers.edu.

doi: 10.1158/1940-6207.CAPR-09-0059

©2010 American Association for Cancer Research.
than higher doses of atorvastatin, aspirin, or celecoxib alone (15). Atorvastatin in combination with celecoxib also inhibited the formation and growth of androgen-independent prostate PC-3 xenograft tumors (16).

Celecoxib is a selective cyclooxygenase (Cox)-2 inhibitor. Earlier studies have shown that Cox-2 is overexpressed in human prostate adenocarcinomas (17–20). Other studies showed that expression of Cox-2 in prostate cancer was not always observed, suggesting that the chemopreventive effect of celecoxib on prostate cancer may be mediated by Cox-2–independent mechanisms (21, 22). In an earlier study, prostate cancer patients who had relapsed after radiation therapy or radical prostatectomy were treated with celecoxib 200 mg twice daily (23). Follow-up PSA levels were obtained at 3, 6, and 12 months after initiating treatment. Decreased serum PSA levels and increased PSA doubling time were found in some patients, suggesting that celecoxib might have helped prevent or delay prostate cancer progression in these patients (23). Although recent clinical studies showed that long-term use of a high dose of celecoxib was associated with an increased cardiovascular risk (24, 25), the use of celecoxib to decrease mortality by delaying the progression of prostate cancer may have an overall favorable benefit/risk ratio. An effective strategy to reduce side effects is the use of a low dose of celecoxib in combination with other preventive agents such as atorvastatin.

In the present study, we assessed the preventive effect of atorvastatin and celecoxib alone or in combination on the progression of androgen-dependent LNCaP xenograft tumors to androgen independence in severe combined immunodeficient (SCID) mice. We found that a combination of low doses of atorvastatin and celecoxib had a more potent effect in inhibiting the androgen-independent growth of LNCaP tumors than a higher dose of either agent alone.

Materials and Methods

Cell culture and reagents

LNCaP cells were obtained from the American Type Culture Collection. Atorvastatin and celecoxib were provided by the National Cancer Institute Repository. Propylene glycol, polysorbate 80, benzyl alcohol, ethanol, and DMSO were purchased from Sigma. Matrigel was obtained from BD Biosciences. RPMI 1640 tissue culture medium, penicillin-streptomycin, t-glutamine, and fetal bovine serum (FBS) were from Life Technologies, Inc. Charcoal-stripped FBS was purchased from HyClone, Inc. LNCaP cells were maintained in RPMI 1640 culture medium containing 10% FBS, supplemented with penicillin (100 units/mL)-streptomycin (100 μg/mL) and t-glutamine (300 μg/mL). Cultured cells were grown at 37°C in a humidified atmosphere of 5% CO2 and were passaged twice a week. LNCaP cells were initially seeded at a density of 0.5 × 10^5/mL in 35-mm tissue culture dishes (2 mL/dish) for assays of proliferation and apoptosis and seeded at a density of 1 × 10^5/mL of medium in 100-mm culture dishes (10 mL/dish) for the Western blot analysis. Atorvastatin and celecoxib were dissolved in DMSO, and the final concentration of DMSO in all experiments was 0.2%. In experiments with androgen-depleted medium, charcoal-stripped FBS was used to replace regular FBS in cell culture medium.

Determination of the number of viable cells

The number of viable cells after each treatment was determined using a hemacytometer under a light microscope (Nikon Optiphot). Cell viability was determined by trypan blue exclusion assay, which was done by mixing 80 μL of cell suspension and 20 μL of 0.4% trypan blue solution for 2 min. Blue cells were counted as dead cells and the cells that did not absorb dye were counted as live cells.

Morphologic assessment of apoptotic cells

Apoptosis was determined by morphologic assessment in cells stained with propidium iodide (26). Briefly, cytospin slides were prepared after each experiment and cells were fixed with acetone/methanol (1:1) for 10 min at room temperature, followed by 10 min with propidium iodide staining (1 μg/mL in PBS), and analyzed using a fluorescence microscope (Nikon Eclipse TE200). Apoptotic cells were identified by classic morphologic features including nuclear condensation, cell shrinkage, and formation of apoptotic bodies (26). At least 200 cells were counted in each sample and the percentage of apoptotic cells was determined.

Progression of androgen-dependent prostate LNCaP tumors to androgen independence in immunodeficient mice

Male SCID mice were obtained from Taconic Farms, Inc. The animals were housed in sterile filter-capped microisolator cages and provided with sterilized 5010 rodent diet and water. As illustrated in Fig. 1, LNCaP cells (2.5 × 10^6)/0.1 mL per mouse) suspended in 50% Matrigel (Collaborative Research) in RPMI 1640 were injected s.c. into the right flank of the mice. After 4 to 6 wk, mice with LNCaP tumors (0.6–1.0 cm wide and 0.6–1.0 cm long) were surgically castrated and injected with vehicle (5 μL/g body weight), atorvastatin (10 μg/g body weight), celecoxib (10 μg/g body weight), or atorvastatin (5 μg/g body weight) + celecoxib (5 μg/g body weight) once a day for 42 d. In all experiments, animals in the different experimental groups received the same amount of vehicle (5 μL/g body weight), which consisted of propylene glycol/polysorbate 80/benzyl alcohol/ethanol/water (40:0.5:1:10:48.5). Tumor size (length × width; in square centimeters) and body weight were measured once every 3rd day after surgical castration. The development of androgen independence was monitored by the growth of tumors. At the end of the study, mice were sacrificed, and tumors were excised, weighed, and placed in phosphate-buffered formalin at room temperature for 48 h and then placed in ethanol for 48 h before the preparation of paraffin sections as previously described (27). All animal experiments were carried out under an Institutional Animal Care and Use Committee–approved protocol.
Plasma levels of atorvastatin and celecoxib

EDTA-treated plasma samples (100 μL each) were treated with 10 μL of 5% ascorbic acid before storage at −70°C. Extraction of atorvastatin and celecoxib from plasma samples was done by treatment with 100 μL of 0.4 mol/L sodium phosphate buffer (pH 6.8), followed by shaking with 1,000 and 700 μL of ethyl acetate and centrifugation consecutively. The pooled upper ethyl acetate phase (1400 μL) was dried. The residue was reconstituted in 100 μL of acetonitrile/water (1:1), and the sample was centrifuged. Ten microliters of the resulting supernatant were applied to a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. LC/MS was conducted on a Thermo LTQ linear ion trap mass detector (ThermoFisher Scientific) interfaced with an electrospray ionization probe, with a Surveyor MS pump and a Surveyor refrigerated (4°C) autosampler. Chromatographic separation was done on a Phenomenex Gemini C18 column (50 × 2.0-mm i.d., 3 μm particle size). The LC mobile phases consisted of acetonitrile/water [10:90 (v/v), containing 0.2 mmol/L HCOOH; solvent A] and acetonitrile/water [450:50 (v/v), containing 0.2 mmol/L HCOOH; solvent B]. The mobile phase was delivered at 0.2 mL/min. The column was eluted with a linear gradient from 7% to 100% of B from 0 to 15 min and then with 100% of B from 15 to 16 min. The column was then reequilibrated to 7% of B for 6 min before injection of the next sample. The LC eluent flow after 2 min was introduced to the mass spectrometer for data acquisition. The MS/MS parameters in the negative-ion electrospray ionization mode were tuned to maximize the generation of deprotonated drug molecules ([M-H]⁻, m/z 557 for atorvastatin and m/z 308 for celecoxib). All data acquired were processed by Finnigan Xcalibur software (version 2.0, ThermoFisher, Thermo Electron). The absolute solvent extraction recoveries of atorvastatin (1-4,096 ng/mL) and celecoxib (1-4,096 ng/mL) from plasma were 50% to 55% and 60% to 67%, respectively. Atorvastatin and celecoxib standards in control plasma were analyzed with 100 μL of lysis buffer [10 mmol/L Tris-HCl (pH 7.4), 50 mmol/L sodium chloride, 30 mmol/L sodium pyrophosphate, 50 mmol/L sodium fluoride, 100 μmol/L sodium orthovanadate, 2 mmol/L iodoacetic acid, 5 mmol/L ZnCl₂, 1 mmol/L phenylmethylsulfonyl fluoride, and 0.5% Triton X-100]. The lysates were centrifuged at 12,000 × g for 15 min at 4°C. The protein concentration of whole-cell lysates was determined with a Bio-Rad protein assay kit. Equal amounts (20 μg) of protein were then resolved on a 10% Criterion Precast Gel (Bio-Rad) and transferred onto a polyvinylidene difluoride membrane using a semi-dry transfer system. The membrane was then probed with anti–phosphorylated Akt (Cell Signaling Technology) or anti–phosphorylated extracellular signal–regulated kinase (Erk)-1/2 (Cell Signaling Technology) primary antibody. After binding with primary antibody, the membrane was washed with TBS three times, then incubated with horseradish peroxidase–conjugated secondary antibody (Santa Cruz Biotechnology, Inc.) and washed with TBS three times. Final detection was done with enhanced chemiluminescent reagents. The extent of protein loading was determined by blotting for β-actin. The membrane was incubated in stripping buffer (100 mmol/L β-mercaptoethanol, 2% SDS, and 62.5 mmol/L Tris-HCl at pH 6.7) at 50°C for 30 min with occasional agitation before incubating in blocking buffer and reprobing using anti-β-actin (Santa Cruz Biotechnology).

Immunostaining

An immunoperoxidase staining method was used to determine caspase-3 and NF-κB. Briefly, tumor sections were incubated with an antibody that detects the active form of caspase-3 (R&D Systems), and cytospin slides were incubated with primary antibody against NF-κB (Santa Cruz Biotechnology) for 30 min at room temperature. The sections and cytospin slides were then incubated with a biotinylated secondary antibody for 30 min, followed by incubation with conjugated-avidin solution (ABC elite kit purchased from Vector Laboratories) for 30 min. Color development was achieved by incubation with 0.02% 3,3′-diaminobenzidine tetrahydrochloride containing 0.02% hydrogen peroxide for 10 min at room temperature. The slides were then counterstained with hematoxylin, dehydrated, and coverslipped for permanent mounting. A positive reaction was shown as a brown precipitate in the cytoplasm and/or nucleus of the cells. The number of
caspase-3–positive cells was determined in at least 1,000 cells from each tumor. For NF-κB staining, photomicrographs were taken using a light microscope (Nikon Optiphot-2) linked to an Image System (Media Cybernetics).

NF-κB–dependent reporter gene expression assay

NF-κB transcripional activity was measured by the NF-κB-luciferase reporter gene expression assay. An NF-κB-luciferase construct was kindly provided by Dr. Tony Kong (Department of Pharmaceutics at Rutgers, Piscataway, NJ). The NF-κB-luciferase construct was transiently transfected into LNCaP cells by using Lipofectamine 2000 (Life Technologies) following the manufacturer's instructions. The cells were then treated with atorvastatin or celecoxib alone or in combination for 24 h, and the NF-κB-luciferase activities were measured using luciferase assay kits (E1500, Promega) according to the manufacturer's instruction. The luciferase activity was normalized against known protein concentrations and expressed as percent of luciferase activity in the control cells, which were treated with DMSO solvent. The protein level was determined by using Bio-Rad protein assay kits (Bio-Rad) according to the manufacturer's instructions.

Statistical analyses

The analyses of changes in tumor size were based on a repeated measurement model with heterogeneous first-order autoregressive correlation structure (28). The effects of the treatments were assessed by comparing the rates of change over time between treatment groups (i.e., comparing the slopes between treatment groups). The ANOVA method with the Tukey-Kramer test (29) was used for the comparison of tumor size, body weight, number of mitotic cells, and number of caspase-3–positive cells among the different treatment groups at the end of the study.

Results

Effects of atorvastatin and celecoxib on the growth and apoptosis of prostate cancer LNCaP cells cultured in regular and androgen-depleted media

LNCaP cells cultured in regular (RPMI + 10% FBS) or androgen-depleted (RPMI + 10% charcoal-stripped FBS) medium were treated with atorvastatin (10 μmol/L) or celecoxib (10 μmol/L) alone or in combination for 96 hours. As shown in Fig. 2A, a combination of atorvastatin (10 μmol/L) and celecoxib (10 μmol/L) alone or in combination for 96 hours showed that the level of phosphorylated Erk1 relative to control (1.00) was 0.85 in cells treated with atorvastatin, 0.75 in cells treated with celecoxib, and 0.52 in cells treated with the combination of atorvastatin and celecoxib. The level of phosphorylated Erk2 relative to control (1.00) was 0.83 in cells treated with atorvastatin, 0.64 in cells treated with celecoxib, and 0.43 in cells treated with the combination of atorvastatin and celecoxib. Representative Western blots from three separate experiments are shown in Fig. 2B.

The effect of atorvastatin and celecoxib on the activation of NF-κB was determined by the luciferase reporter gene expression assay. As shown in Fig. 2C, treatment of LNCaP cells cultured in androgen-depleted medium with atorvastatin or celecoxib alone caused some decrease in NF-κB activity, and the combination of atorvastatin and celecoxib had a more potent inhibitory effect on NF-κB activity than either agent alone (Fig. 2C). NF-κB in LNCaP cells was also determined using immunostaining with an anti–NF-κB antibody (Santa Cruz Biotechnology). Representative photomicrographs of NF-κB staining in the cells treated with DMSO, atorvastatin, celecoxib, or atorvastatin + celecoxib are shown (Fig. 2C). As shown in Fig. 2C, treatment of LNCaP cells in androgen-depleted medium with either atorvastatin or celecoxib alone resulted in some decrease in nuclear staining of NF-κB. Treatment of LNCaP cells cultured in androgen-depleted medium with a combination of atorvastatin and celecoxib caused a stronger decrease in nuclear staining of NF-κB than treatment with either agent alone (Fig. 2C).
Plasma levels of atorvastatin and celecoxib after i.p. injection in SCID mice

Plasma levels of atorvastatin and celecoxib were determined to show the levels associated with biological activity in our animal model. The plasma concentration of celecoxib at 0.5 hour after i.p. injection (10 μg/g body weight) in male SCID mice (7-8 weeks old) was 3.9 μg/mL (peak concentration), and a measurable plasma level could be detected at 24 hours (Fig. 3). The plasma concentration of celecoxib at 24 hours post-injection was 1.4 ng/mL.
The area under the plasma concentration time curve (AUC_{0-24 h}) for celecoxib was 25.6 μg h/mL, and the half-life (t_{1/2}) was ~2.0 hours. The plasma concentration of atorvastatin at 0.5 hour after i.p. injection (10 μg/g) was 7.0 μg/mL (peak plasma concentration), and the plasma level decreased rapidly and could no longer be detected at 6 hours post-injection (the limit of quantification was 1 ng/mL; Fig. 3). The area under the plasma concentration time curve (AUC_{0-24 h}) for atorvastatin was 7.0 μg h/mL, and the t_{1/2} was ~0.6 hour.

Effects of i.p injections of atorvastatin or celecoxib alone or in combination on the formation and growth of androgen-independent LNCaP tumors in castrated SCID mice

Male SCID mice (7-8 weeks old) were injected s.c. with LNCaP cells suspended in a 1:1 mixture of Matrigel and culture medium (2.0 × 10^6 cells/0.1 mL). When the tumors reached a moderate size (0.6-1.0 cm wide and 0.6-1.0 cm long), the mice were surgically castrated and then received daily i.p injections of vehicle, atorvastatin (10 μg/g body weight/d), celecoxib (10 μg/g body weight/d), or a combination of atorvastatin (5 μg/g body weight/d) and celecoxib (5 μg/g body weight/d) for 42 days. The average tumor size in each group was similar when the mice were castrated. In all groups, the LNCaP tumors regressed initially in response to castration, but the tumors then progressed to androgen independence and started to grow at 2 to 4 weeks after castration. Regrowth of the tumors started at 15, 21, 21, and 30 days after castration in the control, atorvastatin, celecoxib, and atorvastatin + celecoxib groups, respectively (Fig. 4A). The time that it took for the tumors to reach their original size at the time of castration was 24, 36, 33, and >42 days in the control, atorvastatin, celecoxib, and atorvastatin + celecoxib groups, respectively (Fig. 4A). The growth curves of all groups showed significant quadratic trends. The growth rate (quadratic trend) for the control group was significantly higher than that for any other group (P < 0.001). The growth rate (quadratic trend) for the combination group was significantly lower than that for the atorvastatin-treated group (P = 0.003) or the celecoxib-treated group (P < 0.001). The mean ± SE for the percentage of initial tumor size after 42 days of treatment in the castrated mice was 164.9 ± 8.2 for the control group, 128.3 ± 9.0 for the atorvastatin (10 μg/g/d) group, 138.9 ± 10.6 for the celecoxib (10 μg/g/d) group, and 94.6 ± 6.0 for the atorvastatin (5 μg/g/d) + celecoxib (5 μg/g/d) group. Statistical analysis using ANOVA with the Tukey-Kramer multiple comparison test showed that the percentage of initial tumor size was significantly lower in the combination group than in the atorvastatin group (P < 0.05) or celecoxib group (P < 0.01). The results indicate that treatment of the mice with a combination of atorvastatin and celecoxib had a stronger effect than treatment of the mice with twice the dose of either agent alone in inhibiting the formation and growth of androgen-independent prostate tumors. The effects of the various treatments on body weight are described in Fig. 4B. The mean (± SE) percent of initial body weight after 42 days of treatment was 90.9 ± 1.8% for the control group, 85.6 ± 0.8% for the atorvastatin group, 84.3 ± 2.2% for the celecoxib group, and 89.5 ± 2.1% for the atorvastatin + celecoxib group. Statistical analysis with the Tukey-Kramer multiple comparison test showed that differences in the percent of initial body weight between any two groups were not statistically significant (P > 0.05).

Effects of i.p. injections of atorvastatin or celecoxib alone or in combination on proliferation and apoptosis in LNCaP tumors

We determined the effects of daily i.p. injections of atorvastatin or celecoxib alone or in combination for 42 days

| Table 1. Stimulatory effects of atorvastatin and celecoxib alone or in combination on apoptosis in LNCaP cells |
|--|-----------------|------------------|
| Treatment | % Apoptotic cells | Fold increase* |
| Regular medium | | |
| Control | 1.9 ± 0.2 | — |
| Atorvastatin (10 μmol/L) | 12.3 ± 0.5 | 6.5 |
| Celecoxib (10 μmol/L) | 15.1 ± 0.6 | 7.9 |
| Atorvastatin (10 μmol/L) + celecoxib (10 μmol/L) | 33.4 ± 2.5 | 17.6 |
| Androgen-depleted medium | | |
| Control | 9.0 ± 0.2 | 4.7 |
| Atorvastatin (10 μmol/L) | 22.5 ± 1.4 | 11.8 |
| Celecoxib (10 μmol/L) | 27.8 ± 2.0 | 14.6 |
| Atorvastatin (10 μmol/L) + celecoxib (10 μmol/L) | 62.2 ± 4.1 | 32.7 |

NOTE: LNCaP cells were seeded at a density of 5 × 10^4/mL in cell culture dishes and incubated in regular or androgen-depleted medium. The cells were treated with atorvastatin (10 μmol/L) and celecoxib (10 μmol/L) alone or in combination for 96 h. Apoptotic cells were determined by morphologic assessment. Each value represents the mean ± SE from three experiments.

*Fold increase when compared with control cells grown in regular medium.
on proliferation and apoptosis in the LNCaP tumors described in Fig. 4. Tumor cell proliferation was determined by counting mitotic cells, and apoptosis was determined by immunostaining of caspase-3 (active form)–positive cells. As shown in Table 2, the percent of mitotic cells was decreased significantly in tumors from mice treated with atorvastatin + celecoxib when compared with the control group. Apoptosis, as measured by the percentage of caspase-3 (active form)–positive cells in tumors, was increased significantly in the atorvastatin + celecoxib group (Table 2). The ratio of the percent mitotic cells/percent caspase-3 (active form)–positive cells, which is an index of the balance between cell proliferation and cell death, was also determined in the LNCaP tumors. We found that the ratio of the percent mitotic cells/percent caspase-3 (active form)–positive cells ± SE in tumors was 1.62 ± 0.11 for the vehicle-treated control group, 0.91 ± 0.07 for the atorvastatin group (10 μg/g), 1.03 ± 0.09 for the celecoxib group (10 μg/g), and 0.61 ± 0.06 for the atorvastatin (5 μg/g) + celecoxib (5 μg/g) group (Table 2).

Discussion

In an earlier study, we showed that a combination of atorvastatin and celecoxib was more effective than either drug alone in inhibiting the growth of cultured PC-3, Du145, LNCaP, and CWR22Rv1 prostate cancer cells (androgen-dependent and androgen-independent cell lines; ref. 16). In this earlier study, we found that atorvastatin and celecoxib decreased the level of phospho-Erk1/2 and the activity of NF-κB (16). Our earlier study also showed that daily i.p. injections of a combination of atorvastatin (5 μg/g body weight) and celecoxib (5 μg/g body weight) was more effective in inhibiting the growth of androgen-independent PC-3 xenograft tumors in SCID mice than daily i.p. injections of 10 μg/g body weight of either drug alone. Administration of the combination of drugs inhibited mitosis and stimulated apoptosis in PC-3 tumors (16).

In the present study, we determined whether administration of celecoxib and atorvastatin would inhibit the progression of androgen-dependent xenograft tumors to androgen independence. We found that administration of a combination of atorvastatin and celecoxib was more effective than either drug alone in inhibiting the progression of androgen-dependent xenograft LNCaP tumors to androgen independence in castrated SCID mice. Daily i.p injections of a combination of atorvastatin and celecoxib doubled the time that it took for the progression of androgen-dependent xenograft LNCaP tumors to androgen-independent growth (time for tumors to start regrowing after castration; Fig. 4A). In cultured LNCaP cells, we found that a combination of atorvastatin, celecoxib, and androgen depletion strongly induced apoptosis in cultured LNCaP cells. Androgen depletion or treatment with celecoxib or atorvastatin alone resulted in a 5- to 8-fold increase in apoptosis in LNCaP cells, whereas a combination of all three treatments resulted in a 33-fold increase in apoptosis (Table 1). Although treatment of cultured LNCaP cells with a combination of atorvastatin and celecoxib in androgen-depleted medium resulted in 62% apoptotic cells (Table 1), the absolute number of apoptotic cells in tumors from castrated mice treated with atorvastatin and celecoxib was very low (Table 2). The low percentage of apoptotic cells in LNCaP tumors may be due to the removal of apoptotic cells by phagocytosis that prevents their accumulation. Although the absolute number of apoptotic cells in tumors was low, we found a significant increase in apoptotic cells and a significant decrease in mitotic cells in the tumors from mice treated with atorvastatin and celecoxib in combination. Our results indicate that the drug-induced delay in the progression of androgen-dependent LNCaP tumors to androgen independence was associated with a highly significant decrease in the proliferation/apoptosis ratio in the tumors (Table 2).

The transition of prostate cancer cells to an androgen-independent phenotype is a complex process that involves the survival of prostate cancer cells during androgen deprivation treatment, adaptive changes in gene expression, as well as alterations in growth/death signaling pathways (3, 4). Earlier studies have implicated activation of the Akt signaling pathway for the survival of prostate cancer cells treated with androgen ablation therapy (30, 31). Increased expression of Cox-2 and phosphorylated Erk1/2 was found in advanced prostate cancer (17, 32, 33). Increased androgen receptor (AR) signaling also plays an important role in the development of androgen independence (34–37). Another positive growth signal that is increased during androgen-independent progression is insulin-like growth factor I (38). In the present study, we found that atorvastatin and celecoxib in combination...
was more potent in suppressing the progression of androgen-dependent LNCaP tumors to androgen independence than either agent alone. We also found that the combination of these two drugs had a stronger inhibitory effect on the activation of Akt, Erk1/2, and NF-κB in cultured LNCaP cells than either compound used alone (Fig. 2B and C).

The mechanisms by which atorvastatin and celecoxib in combination inhibit the growth of and induce apoptosis in LNCaP prostate tumors are not clear. Atorvastatin is a 3-hydroxy-3-methylglutaryl CoA reductase inhibitor that reduces the synthesis of isoprenoids, geranylgeranyl pyrophosphate and farnesylpyrophosphate and their precursor mevalonate (39). Notably, geranylgeranyl pyrophosphate and farnesylpyrophosphate are required for the function of Rho and Ras proteins, respectively (40). Because Ras and Rho are important signaling molecules in cell proliferation and survival, atorvastatin and other statin drugs may interfere with Ras/Rho activity and thus inhibit the growth of and stimulate apoptosis in cancer cells. One of the downstream effectors of Ras activation is phosphoinositide 3-kinase/Akt. Atorvastatin was shown to inhibit cytotoxic drug-induced activation of Akt in lung cancer cells (41). Although celecoxib is a selective Cox-2 inhibitor, this drug also inhibits prostate cancer growth by Cox-2–independent mechanisms (42). In an earlier study, it was shown that celecoxib inhibited Akt activation and stimulated apoptosis in prostate cancer cells (43). Celecoxib was also shown to inhibit the activation of NF-κB, Akt, and Erk1/2 in lung cancer cells (44). A combination of atorvastatin and celecoxib strongly decreased the level of phosphorylated-Akt in colon cancer cells (45). In the present study, we found that atorvastatin and celecoxib in combination had a more potent inhibitory effect on the levels of activated Akt, Erk1/2, and NF-κB in LNCaP cells than either drug alone (Fig. 2B and C). Simultaneous inhibition of these pathways may lead to a strong inhibitory effect on proliferation and a strong stimulatory effect on apoptosis in prostate cancer cells.

Animal models were developed to mimic the formation and progression of prostate cancer in humans. Mouse models for prostate carcinogenesis include the TRAMP
model (46), the Nkx3.1/Pten mutant mouse model (47), the c-myc transgenic mouse model (48), and the conditional Pten knockout mouse model (49). A mouse model of the progression of an androgen-dependent prostate tumor to androgen independence was previously established (50). In this model, immunodeficient nude mice with human androgen-dependent LNCaP tumors were surgically castrated to mimic androgen ablation therapy in patients. Castration of mice with LNCaP tumors resulted in temporary tumor regression followed by androgen-independent growth of the tumors (50). In the present study, SCID mice with LNCaP tumors were surgically castrated, and tumor regression was observed for about 2 weeks after surgery. Then, as the tumors became androgen independent, they started to grow (see Fig. 4A). We found that this mouse model is very useful for studies on the prevention of progression of androgen-dependent prostate tumor to androgen independence. An appealing property of this model is that a comparison of the effects of different preventive agents alone or in combination on molecular events of androgen-independent progression can be made between the same type of human prostate cancer cells in vitro and in vivo.

In the present study, an i.p. injection of celecoxib (10 μg/g body weight) in male SCID mice resulted in a peak plasma concentration of 3.9 μg/mL, and the half-life was ~2.0 hours. It was reported that oral administration of celecoxib (200 mg) in humans resulted in a peak plasma level of 0.6 to 1.3 μg/mL, and the half-life was 7.6 to 15.2 hours (51). In the present study, an i.p. injection of atorvastatin (10 μg/g body weight) in male SCID mice resulted in a peak plasma level of 7.0 μg/mL, and the half-life was ~0.6 hour. An earlier study showed that oral administration of atorvastatin (20 mg) in humans resulted in a peak plasma level of ~7 ng/mL (52). After oral administration of atorvastatin (20 mg) once a day for 14 days, the peak plasma level was 15 ng/mL (53). The half-life of atorvastatin in humans was 7 to 19.5 hours (52, 53). The peak plasma levels of celecoxib and atorvastatin in the present study in male SCID mice were higher than those observed in humans. However, both drugs were eliminated from SCID mice much more rapidly (shorter $t_{1/2}$) than in humans. Further studies are needed to determine whether a dosing regimen of celecoxib and atorvastatin that provides a blood level profile similar to that in humans (frequent dosing or minipump infusion) will have an inhibitory effect on the progression of androgen-dependent LNCaP tumors to androgen independence.

In summary, we found that the combination of atorvastatin and celecoxib more strongly inhibited growth and the activation of Akt, Erk1/2 and NF-κB in cultured LNCaP cells than either agent alone. In addition, administration of a combination of celecoxib and atorvastatin had a strong inhibitory effect on the progression of androgen-dependent LNCaP prostate tumors to androgen independence in castrated SCID mice. The delayed formation of androgen-independent LNCaP tumors was associated with decreased mitosis and increased apoptosis in the tumors.

Table 2. Effects of atorvastatin or celecoxib alone or in combination on mitotic and caspase-3–positive cells in LNCaP tumors

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of animals</th>
<th>Percent mitotic cells</th>
<th>Percent caspase-3–positive cells</th>
<th>Ratio of percent mitotic cells/caspase-3–positive cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8</td>
<td>0.47 ± 0.03</td>
<td>0.29 ± 0.02</td>
<td>1.62 ± 0.11</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>8</td>
<td>0.37 ± 0.02*</td>
<td>0.41 ± 0.03*</td>
<td>0.91 ± 0.07†</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>8</td>
<td>0.40 ± 0.03</td>
<td>0.39 ± 0.02*</td>
<td>1.03 ± 0.09†</td>
</tr>
<tr>
<td>Atorvastatin + celecoxib</td>
<td>8</td>
<td>0.30 ± 0.02†</td>
<td>0.50 ± 0.03†</td>
<td>0.61 ± 0.06‡</td>
</tr>
</tbody>
</table>

NOTE: Tumors from SCID mice in the experiment described in Fig. 1 were analyzed for mitotic cells and caspase-3 positive cells. Mitotic cells were identified and counted in H&E-stained tissue sections using a light microscope. Caspase-3 positive cells were identified immunohistochemically. Mitotic cells and caspase-3 positive cells were determined in at least 1,000 cells from each tumor. Each value represents the mean ± SE.
* $P < 0.05$, versus the control group (Tukey-Kramer multiple comparison test).
† $P < 0.01$, versus the control group (Tukey-Kramer multiple comparison test).
‡ $P < 0.001$, versus the control group (Tukey-Kramer multiple comparison test).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Florence Florek for her excellent help in the preparation of the manuscript.
Grant Support

NIH grants CA121391, CA133902, and CA120915. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 3/31/09; revised 8/26/09; accepted 9/29/09; published on 1/5/10.

References

Atorvastatin and Celecoxib in Combination Inhibits the Progression of Androgen-Dependent LNCaP Xenograft Prostate Tumors to Androgen Independence

Xi Zheng, Xiao-Xing Cui, Zhi Gao, et al.