Contents

PERSPECTIVES

1361 The Origins and Implications of Intratumor Heterogeneity
 Franziska Michor and Kornelia Polyak
 See article p. 1388

1365 Psychosocially Influenced Cancer: Diverse Early-Life Stress Experiences and Links to Breast Cancer
 Linda A. Schuler and Anthony P. Auger
 See article p. 1398

1371 Making Sense of Missense in Lynch Syndrome: The Clinical Perspective
 Henry T. Lynch, Thomas Laszou, Stephen Lanspa, and C. Richard Boland
 See article p. 1409

1375 Chemoprevention of Pancreatic Cancer: Ready for the Clinic?
 Craig D. Logsdon and James L. Abbruzzese
 See article p. 1417

1379 Breaking the NF-κB and STAT3 Alliance Inhibits Inflammation and Pancreatic Tumorigenesis
 Young-Joon Suh, Ann M. Bode, and Zigang Dong
 See article p. 1427

REVIEW

1382 Deploying Mouse Models of Pancreatic Cancer for Chemoprevention Studies
 Paul J. Grippo and David A. Tuveson

1385 Neonatal Experiences Differentially Influence Mammary Gland Morphology, Estrogen Receptor α Protein Levels, and Carcinogenesis in BALB/c Mice
 Allison L. Boyd, Ayesha Salleh, Brent Humber, Janet Yee, Ladislav Tomas, and Leslie R. Kerr
 See perspective p. 1365

1409 An MLH1 Mutation Links BACH1/FANCI to Colon Cancer, Signaling, and Insight toward Directed Therapy
 Jenny Xie, Shawna Guillemette, Min Peng, Candace Gilbert, Andrew Buermeyer, and Sharon B. Cantor
 See perspective p. 1371

1417 The Epidermal Growth Factor Receptor Inhibitor Gefitinib Prevents the Progression of Pancreatic Lesions to Carcinoma in a Conditional LSL-Kras(G12D)+/Mice Transgenic Mouse Model
 Alkaf Mohammed, Naveena B. Janakiram, Qian Li, Venkateshwar Madka, Misty Ely, Stan Lightfoot, Howard Crawford, Vernon E. Steele, and Chinthalapally V. Rao
 See perspective p. 1375

1427 Synthetic Tripterpenoids Prolong Survival in a Transgenic Mouse Model of Pancreatic Cancer
 Karen T. Liby, Darlene B. Roysce, Renee Risingsong, Charlotte R. Williams, Anirban Maitra, Ralph H. Hruban, and Michael B. Sporn
 See perspective p. 1379

1435 MicroRNA Expression Profiling of Exfoliated Colonocytes Isolated from Feces for Colorectal Cancer Screening
 Yoshikatsu Koga, Masahiro Yasunaga, Amane Takahashi, Junichiro Kuroda, Yoshihiro Moriya, Takayuki Akasu, Shin Fujita, Seiichiro Yamamoto, Hideo Baba, and Yasuhiro Matsumura

1443 Black Raspberries Inhibit Intestinal Tumorigenesis in Apc1638/+ and Muc2−/− Mouse Models of Colorectal Cancer
 Xiuli Bi, Wenfeng Fang, Li-Shu Wang, Gary D. Stoner, and Wancai Yang

Research Articles

1388 A Comprehensive Survey of Clonal Diversity Measures in Barrett’s Esophagus as Biomarkers of Progression to Esophageal Adenocarcinoma
 Lauren M.F. Merlo, Najaf A. Shah, Xiaohong Li, Patricia L. Blount, Thomas L. Vaughan, Brian J. Reid, and Carlo C. Maley
 See perspective p. 1361
<table>
<thead>
<tr>
<th>Page</th>
<th>Article Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1451</td>
<td>Metformin and Cancer Risk in Diabetic Patients: A Systematic Review and Meta-analysis</td>
<td>Andrea DeCensi, Matteo Puntoni, Pamela Goodwin, Massimiliano Cazzaniga, Alessandra Gennari, Bernardo Bonanni, and Sara Gandini</td>
</tr>
<tr>
<td>1462</td>
<td>Thiocolchicoside Exhibits Anticancer Effects through Downregulation of NF-κB Pathway and Its Regulated Gene Products Linked to Inflammation and Cancer</td>
<td>Simone Reuter, Sahdeo Prasad, Kanokkarn Phromnoi, Jayaraj Ravindran, Bokyung Sung, Vivek R. Yadav, Ramaswamy Kannappan, Madan M. Chaturvedi, and Bharat B. Aggarwal</td>
</tr>
<tr>
<td>1473</td>
<td>Diallyl Trisulfide Inhibits Activation of Signal Transducer and Activator of Transcription 3 in Prostate Cancer Cells in Culture and In vivo</td>
<td>Kumar Chandra-Kantal and Shivendra V. Singh</td>
</tr>
</tbody>
</table>

CORRECTION

<table>
<thead>
<tr>
<th>Page</th>
<th>Article Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1503</td>
<td>Correction: Finasteride Modifies the Relation between Serum C-Peptide and Prostate Cancer Risk: Results from the Prostate Cancer Prevention Trial</td>
<td></td>
</tr>
</tbody>
</table>

ABOUT THE COVER

The cover features a histology section from a patient’s biopsy specimen of Barrett’s esophagus stained with hematoxylin and eosin (courtesy of Dr. Amitabh Srivastava, Dartmouth-Hitchcock Medical Center). The specimen features a region of dysplasia (upper left) next to a region of non-dysplasia, visually illustrating the concept of the phenotypic diversity that may be found within Barrett’s esophagus. New work has provided a comprehensive analysis of measures of genetic diversity within a Barrett’s esophagus segment as predictors of the risk for progression to esophageal adenocarcinoma. See articles by Merlo et al. (beginning on page 1388) and Michor and Polya (beginning on page 1361) for more information.
Updated version
Access the most recent version of this article at:
http://cancerpreventionresearch.aacrjournals.org/content/3/11

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.