Abstract

This perspective on Liby et al. (beginning on page 1427 in this issue of the journal) discusses the importance of the finding that two synthetic triterpenoids prolonged survival in a pancreatic cancer mouse model. This finding is significant because pancreatic cancer is one of the deadliest human cancers. These compounds inhibited the interaction between NF-κB and signal transducer and activator of transcription 3, and determining the mechanisms underlying this inhibition will help to rapidly move these compounds into phase I clinical trials. *Cancer Prev Res; 3(11): 1379–81. ©2010 AACR.*

Despite many recent advances in treatment and surgery, pancreatic cancer has one of the worst prognoses of all cancers. Only 20% of patients have localized, potentially curable tumors at the initial diagnosis (1), and diagnosis at an advanced stage, as often occurs, makes pancreatic cancer difficult to treat. This disease has a complex etiology that involves both environmental and genetic factors. Although cigarette smoking has been linked to at least 25% of cases, recent studies reveal that obesity and type II diabetes are two major modifiable risk factors for this highly lethal disease (2). A better understanding of the mechanistic effects of obesity and diabetes on the pancreas would pave the way for new strategies for prevention or therapy of pancreatic cancer (2).

Over the past decade, at least a dozen molecular pathways implicated in pancreatic carcinogenesis have been unraveled. Moreover, global gene expression profiling and the use of microarray databases have facilitated the identification of hundreds of genes that are differentially expressed in pancreatic cancer (3). Validation of these genes as biomarkers for early diagnosis, prognosis, or treatment efficacy, however, is still incomplete. Although several studies indicated the plausible contribution of some genetic factors to the development and progression of pancreatic cancer, common genetic variants associated with this disease remain poorly understood. A Japanese genome-wide association study in 991 cases of invasive pancreatic ductal adenocarcinoma and 5,209 controls identified single-nucleotide polymorphisms present in the three chromosomal loci 6p25.3, 12p11.21, and 7q36.2 that were significantly associated with increased risk of pancreatic cancer (4).

The relatively low survival rate of patients with pancreatic cancer is primarily due to a late diagnosis and the absence of effective treatments. Standard current pancreatic cancer therapies, such as gemcitabine or erlotinib, are not very effective, emphasizing the need for novel chemopreventive and better therapeutic strategies for this disease. Synthetic and naturally occurring substances have been evaluated in cell culture and in *vivo* animal models for their pancreatic cancer chemopreventive potential (5). Some chemopreventive agents, such as curcumin or resveratrol, were reported to sensitize pancreatic cancer cells to standard chemotherapeutic drugs (e.g., gemcitabine or erlotinib). However, only a few clinical trials of these agents have been completed or initiated in this setting, and more are needed. Pancreatic cancer risk increases with age, but genetic and environmental factors also can increase the risk. Premalignant epithelial lesions of the pancreas have been used for screening. Development of chemopreventive agents is particularly needed for individuals with the aforementioned risk factors and for patients with premalignant pancreatic lesions (5).

Inflammation is implicated in the majority of human malignancies, including pancreatic cancer (6–9), and chronic inflammation is estimated to contribute to about 15% to 20% of all human cancers. Prolinflammatory enzymes, such as cyclooxygenase-2 and inducible nitric oxide synthase, and cytokines, including tumor necrosis factor-α (TNF-α), are overexpressed and/or overproduced in inflammation-associated carcinogenesis. The expression of these proinflammatory proteins is regulated primarily by the transcription factor NF-κB. Because NF-κB is highly active both in inflammatory cells, such as macrophages,
and in cells found in inflamed tissues, it is recognized as a key mediator of inflammation (10). Moreover, constitutive activation of this redox-sensitive transcription factor is frequently observed in many human tumor specimens and is associated with a poor prognosis. Cells having abnormally elevated NF-κB activity are more resistant to drug and radiation therapies. A high level of NF-κB contributes to the impaired ability of a cell to undergo apoptosis, which would eliminate defective or damaged cells. NF-κB normally is sequestered in the cytoplasm in an inactive complex with the inhibitor of NF-κB α (IκBα). Phosphorylation and subsequent ubiquitination of IκBα render this inhibitory protein inactive through proteasome-mediated degradation and thereby release NF-κB for translocation into the nucleus. The key enzyme that is involved in IκBα phosphorylation is IκB kinase (IKK), especially IKKβ (11, 12).

In addition to NF-κB, signal transducer and activator of transcription 3 (STAT3) is recognized as an important mediator of inflammation associated with tumor promotion. Persistently activated STAT3 stimulates proliferation, survival, and invasion of tumor cells and suppresses anti-tumor immune responses (13, 14). Recent attention has focused on the interplay or cross talk between NF-κB and STAT3 in controlling the cross talk or physiologic interactions of malignant cells with the tumor microenvironment, especially with inflammation and immune cells that infiltrate tumors (15). Thus, the IKK/NF-κB and STAT3 pathways seem to be central signaling hubs in inflammation-mediated tumor promotion and progression (16). Furthermore, maintenance of constitutively elevated NF-κB activity requires STAT3, which is also frequently activated in cancer. STAT3 prolongs retention of NF-κB in the nucleus, which occurs through p300-mediated acetylation of RelA/p65 (17). The interplay between NF-κB and STAT3, however, does not seem to be unidirectional. Therefore, NF-κB might also control the activation of STAT3, specifically in intestinal epithelial cells. This control can be achieved by recruiting bystander cells (i.e., myeloid cells) that secrete STAT3-activating cytokines such as interleukin-6 (IL-6) and TNF-α or by inducing the transcription of genes that encode these proinflammatory cytokines (16).

The suggestion has been made that IL-6 released by either myeloid cells or T lymphocytes would promote epithelial cell proliferation through STAT3 activation. In support of this speculation, deletion of the gene encoding IL-6 and the intestinal epithelial cell–restricted deletion of STAT3 both suppressed the development of colitis-associated adenomas (18). Therefore, STAT3 is likely to represent an important target for the treatment of colorectal cancer.

In this issue of the journal, Liby and colleagues report that CDDO-ME or CDDO-EA significantly increased survival in the KPC (K-ras, p53, Cre recombinase) transgenic mouse model of pancreatic cancer (20). This mouse harbors a point mutation in both the K-ras oncogene and p53 tumor suppressor gene under the control of the pancreas-specific promoter Pdx-1. Because this triplet transgenic mouse model mimics both the genetic and histologic changes observed in human pancreatic cancer, it is considered to be one of the most relevant animal models for preclinical evaluation of new drugs for cancer prevention.
preventing and treating human pancreatic cancer. By using biotinylated CDDO-ME and CDDO-EA, Liby et al. (20) nicely showed the direct binding of these synthetic triterpenoids to IKK and STAT3. This binding might explain the subsequent inactivation of NF-κB and STAT3 in several different cell lines derived from solid pancreatic carcinoma or abdominal ascites in KPC mice (20). Furthermore, both compounds inhibited the constitutive secretion of IL-6, a proinflammatory cytokine that plays an essential role in linking STAT3 and NF-κB signaling.

CDDO-ME and CDDO-EA are highly effective for preventing and/or treating cancer in some animal models (5, 21, 22) including KPC transgenic mice, which recapitulate the genetic mutations, clinical symptoms, and histopathology found in human pancreatic cancer. KPC transgenic mice fed a diet containing each triterpenoid exhibited a significantly prolonged life span (20). A salient finding of this study is that the aforementioned synthetic triterpenoids are well tolerated at the doses used, without causing any weight loss during the experiment. We look forward to seeing whether synthetic triterpenoids such as CDDO-ME and CDDO-EA as single agents or combined with each other or with other chemopreventive agents such as tea polyphenols, to inhibit NF-κB (23) or combined with retinoic acid to inhibit STAT3 (24), can do well in the clinic without any serious side effects. We also look forward to future investigation of the mechanisms underlying the potential clinical effects of this approach, especially of molecular effects on the unholy alliance between NF-κB and STAT3. Considering the lethality of pancreatic cancer and the ability of CDDO-ME and CDDO-EA to prolong survival in a pancreatic cancer mouse model, phase I clinical testing would be a logical choice in developing these agents for pancreatic cancer prevention.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

NIH grants CA11536, CA077646, and CA120388 (Z. Dong) and Ministry of Education, Science and Technology, Republic of Korea World Class University project grant R31-1098-10103-0 (Y-J. Suh and Z. Dong).

Received 09/23/2010; accepted 09/28/2010; published OnlineFirst 10/26/2010.

References

Breaking the NF-κB and STAT3 Alliance Inhibits Inflammation and Pancreatic Tumorigenesis

Young-Joon Surh, Ann M. Bode and Zigang Dong

Updated version
Access the most recent version of this article at:
doi:10.1158/1940-6207.CAPR-10-0251

Supplementary Material
Access the most recent supplemental material at:
http://cancerpreventionresearch.aacrjournals.org/content/suppl/2010/10/29/1940-6207.CAPR-10-0251.DC1

Cited articles
This article cites 23 articles, 7 of which you can access for free at:
http://cancerpreventionresearch.aacrjournals.org/content/3/11/1379.full#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
http://cancerpreventionresearch.aacrjournals.org/content/3/11/1379.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.