Contents

PERSPECTIVES
573 Statins and the Colorectum: Hope for Chemoprevention?
John A. Baron
See articles pp. 588 and 597

576 Is Prostate Cancer Prevention with Selenium All in the Genes?
Elizabeth A. Platz
See article p. 604

COMMENTARY
579 Premalignant Breast Neoplasia: A Paradigm of Interlesional and Intralesional Molecular Heterogeneity and Its Biological and Clinical Ramifications
Hal K. Berman, Mona L. Gauthier, and Thea D. Tilley

RESEARCH ARTICLES
588 Statin Use and Colorectal Adenoma Risk: Results from the Adenoma Prevention with Celecoxib Trial
Monica M. Bertagnolli, Meier Hsu, Ernest T. Hawk, Craig J. Eagle, and Ann G. Zauber, for the Adenoma Prevention with Celecoxib (APC) Study Investigators
See perspective p. 573

597 Genetic Variation in 3-Hydroxy-3-Methylglutaryl CoA Reductase Modifies the Chemopreventive Activity of Statins for Colorectal Cancer
Steven M. Lipkin, Elizabeth C. Chao, Victor Moreno, Laura S. Rozek, Hedy Rennert, Mila Pinchev, Diana Dizon, Gad Rennert, Levy Kopolovich, and Stephen R. Gruber
See perspective p. 573

604 A Large Prospective Study of SEPI5 Genetic Variation, Interaction with Plasma Selenium Levels, and Prostate Cancer Risk and Survival
Kathryn L. Penney, Fredrick R. Schumacher, Haojie Li, Peter Kraft, J. Steven Morris, Tobias Kurth, Lorelei A. Mucci, David J. Hunter, Philip W. Kantoff, Meir J. Stampfer, and Jing Ma
See perspective p. 576

611 Blood Biomarker Levels to Aid Discovery of Cancer-Related Single-Nucleotide Polymorphisms: Kallikreins and Prostate Cancer
Robert J. Klein, Christer Hallén, Angel M. Cronin, Alexander Ploner, Fredrik Wiklund, Anders S. Bjartell, Pär Stattin, Jianfeng Xu, Peter T. Scardino, Kenneth Offit, Andrew J. Vickers, Henrik Grönberg, and Hans Lilja

620 Social Isolation Reduces Mammary Development, Tumor Incidence, and Expression of Epigenetic Regulators in Wild-type and p53-Heterozygotic Mice
Nina S. Hasen, Kathleen A. O’Leary, Anthony P. Auger, and Linda A. Schuler

630 Deficiency in the 15-kDa Selenoprotein Inhibits Tumorigenicity and Metastasis of Colon Cancer Cells
Robert Irons, Petra A. Truji, Bradley A. Carlson, Ping Ouyang, Min-Hyuk Yoo, Xue-Ming Xu, Dolph L. Hatfield, Vadim N. Gladyshev, and Cindy D. Davis

640 Methylselenocysteine Resets the Rhythmic Expression of Circadian and Growth-Regulatory Genes Disrupted by Nitrosomethyurea In vivo
Ming Zhu Fang, Xun Zhang, and Helmut Zarbl

653 Extract of Oregano, Coffee, Thyme, Clove, and Walnuts Inhibits NF-κB in Monocytes and in Transgenic Reporter Mice
Ingvild Paur, Trude R. Balstad, Mariit Kolberg, Mariit K. Pedersen, Liv M. Austenaa, David R. Jacobs, Jr., and Rune Blomhoff
ABOUT THE COVER

The cover illustration shows two breast ducts containing ductal carcinoma in situ (DCIS; courtesy of Drs. Hal Berman and Mona Gauthier) and representing opposite ends of the theoretical spectrum of molecular heterogeneity in DCIS. The two heterogeneous ducts theoretically could occur in different individuals (i.e., interlesional heterogeneity) or between two regions within a patient’s single DCIS lesion (i.e., intralesional heterogeneity). DCIS can range from homogeneity (left) to a surprising degree of heterogeneity (right) within a single lesion. The continuum of DCIS heterogeneity includes differences in nucleus and cell size, presence and number of coexisting molecular subtypes, and genetic and epigenetic alterations. Well established in invasive breast disease, molecular heterogeneity increasingly clearly is becoming a prevalent, distinct phenotype of DCIS. Key pathways of tumorigenesis modulate critical features of premalignant lesions such as proliferation, differentiation, stress response, and even the generation of diversity. Current studies demonstrate that evaluation of these lesions may provide clinically useful information on future tumor formation as well as biological insights into the origin and functional significance of this distinct phenotype. It is hypothesized that increased heterogeneity marks an increased risk of transformation of DCIS. See article by Berman et al. (beginning on page 579) for more information.