Contents

**PERSPECTIVES**

681  Two Good Choices to Prevent Breast Cancer: Great Taste, Less Filling
    Gabriel N. Hortobagyi and Powell H. Brown  
    See article p. 696

686  The Lack, Need, and Opportunities for Decision-Making and Informational Tools to Educate Primary-Care Physicians and Women about Breast Cancer Chemoprevention
    Peter M. Ravdin  
    See article p. 696

689  Long-term Follow-up in Cancer Prevention Trials (It Ain't Over 'Til It's Over)
    Jack Cuzick  
    See article p. 696

692  Early Changes in Pulmonary Gene Expression following Tobacco Exposure Shed Light on the Role of Estrogen Metabolism in Lung Carcinogenesis
    Jill M. Siegfried  
    See article p. 707

**RESEARCH ARTICLES**

696  Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: Preventing Breast Cancer
    Victor G. Vogel, Joseph P. Costantino, D. Lawrence Wickerham, Walter M. Cronin, Reena S. Cecchini, James N. Atkins, Therese B. Bevers, Louis Fehrenbacher, Eduardo R. Pajon, James L. Wade III, André Robidoux, Richard G. Margoletse, Joan James, Carolyn D. Runowicz, Patricia A. Ganz, Steven E. Reis, Worta McCaskill-Stevens, Leslie G. Ford, V. Craig Jordan, and Norman Wolmark; for the National Surgical Adjuvant Breast and Bowel Project  
    See perspectives pp. 681, 686 and 689

707  Early Changes in Gene Expression Induced by Tobacco Smoke: Evidence for the Importance of Estrogen within Lung Tissue
    Sibele I. Meireles, Gustavo H. Esteves, Roberto Hirata, Jr., Suraj Peri, Karthik Devarajan, Michael Slifker, Stacy L. Mosier, Jing Peng, Manicka V. Vadhanam, Harrell E. Hurst, E. Jordao Neves, Luiz F. Reis, C. Gary Cairola, Ramesh C. Gupta, and Margie L. Clapper  
    See perspective p. 692

718  p53-Independent Apoptosis by Benzyl Isothiocyanate in Human Breast Cancer Cells Is Mediated by Suppression of XIAP Expression
    Su-Hyeong Kim and Shivendra V. Singh

727  Berries and Ellagic Acid Prevent Estrogen-Induced Mammary Tumorigenesis by Modulating Enzymes of Estrogen Metabolism
    Harini S. Aiyer and Ramesh C. Gupta

738  Mortality in the Randomized, Controlled Lung Intergroup Trial of Isotretinoin

745  Effects of β-Carotene Supplementation on Molecular Markers of Lung Carcinogenesis in Male Smokers
    Margaret E. Wright, Steve D. Groshong, Kirsti Husgafvel-Pursiainen, Erin Genova, M. Scott Lucia, Henrik Wolff, Jarmo Virtamo, and Demetrios Albanes

753  Resveratrol Suppresses Oxidative Stress and Inflammatory Response in Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis
    Anupam Bishayee, Kendra F. Barnes, Deepak Bhattia, Altaf S. Darvesh, and Richard T. Carroll

Downloaded from cancerpreventionresearch.aacrjournals.org on June 19, 2017. © 2010 American Association for Cancer Research.
Interleukin-6 as a Potential Indicator for Prevention of High-Risk Adenoma Recurrence by Dietary Flavonols in the Polyp Prevention Trial
Gerd Bobe, Paul S. Albert, Leah B. Sansbury, Elaine Lanza, Arthur Schatzkin, Nancy H. Colburn, and Amanda J. Cross

Identification of Genes Correlated with Early-Stage Bladder Cancer Progression

Combination Effects of Salvinolic Acid B with Low-Dose Celecoxib on Inhibition of Head and Neck Squamous Cell Carcinoma Growth In vitro and In vivo
Yuan Zhao, Yubin Hao, Hongguang Ji, Yayin Fang, Yinhan Gao, Wei Sha, Yanfei Zhou, Xiaowu Pang, William M. Southerland, Joseph A. Califano, and Xinbin Gu

ABOUT THE COVER

The cover images represent crystallographic structures of estrogen (left), tamoxifen (right), and raloxifene (center) bound to the ligand binding domain of estrogen receptor alpha. Helix 12 (yellow) seals estrogen (left) into the ligand binding domain, allowing full activation of estrogen. The bulky antiestrogenic side chains of tamoxifen and raloxifene prevent helix 12 from sealing and activating the estrogen receptor. The side chain of raloxifene (blue, center panel) shields and neutralizes the critical amino acid D351 (green, center panel), thus allowing few estrogen-like actions to occur in company with the strong antiestrogenic activity of raloxifene. In contrast, the tamoxifen side chain cannot shield and neutralize D351 and thus allows estrogen-like actions to occur. [The cover images appeared originally in Jordan et al., Cancer Res 2001;61:6619–23 (left and right panels), and Liu et al., Cancer Res 2001;61:3632–39 (center panel), and are reproduced with permission of the American Association for Cancer Research.] These molecular pharmacology studies relate to new, long-term follow-up results of the Study of Tamoxifen and Raloxifene (STAR), which showed strong benefit-to-risk profiles for both raloxifene and tamoxifen in preventing invasive and noninvasive breast cancer. See articles by Vogel et al. (beginning on page 696), Hortobagyi and Brown (beginning on page 681), Ravdin (beginning on page 686), and Cuzick (beginning on page 689) for more information.