Two Good Choices to Prevent Breast Cancer: Great Taste, Less Filling
Gabriel N. Hortobagyi and Powel H. Brown
See article p. 696

The Lack, Need, and Opportunities for Decision-Making and Informational Tools to Educate Primary-Care Physicians and Women about Breast Cancer Chemoprevention
Peter M. Ravdin
See article p. 696

Long-term Follow-up in Cancer Prevention Trials (It Ain’t Over ‘Til It’s Over)
Jack Cuzick
See article p. 696

Early Changes in Pulmonary Gene Expression following Tobacco Exposure Shed Light on the Role of Estrogen Metabolism in Lung Carcinogenesis
Jill M. Siegfried
See article p. 707

Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: Preventing Breast Cancer
Victor G. Vogel, Joseph P. Costantino, D. Lawrence Wickerham, Walter M. Cronin, Reena S. Cecchini, James N. Atkins, Therese B. Bevers, Louis Fehrenbacher, Eduardo R. Pajon, James L. Wade III, André Robidoux, Richard G. Margoese, Joan James, Carolyn D. Runowicz, Patricia A. Ganz, Steven E. Reis, Worta McCaskill-Stevens, Leslie G. Ford, V. Craig Jordan, and Norman Wolmark; for the National Surgical Adjuvant Breast and Bowel Project
See perspectives pp. 681, 686 and 689

Early Changes in Gene Expression Induced by Tobacco Smoke: Evidence for the Importance of Estrogen within Lung Tissue
Sibele I. Meireles, Gustavo H. Esteves, Roberto Hirata, Jr., Suraj Peri, Karthik Devarajan, Michael Slifker, Stacy L. Mosier, Jing Peng, Manicka V. Vadhahanam, Harrell E. Hurst, E. Jordao Neves, Luiz E. Reis, C. Gary Cairola, Ramesh C. Gupta, and Margie L. Clapper
See perspective p. 692

p53-Independent Apoptosis by Benzyl Isothiocyanate in Human Breast Cancer Cells Is Mediated by Suppression of XIAP Expression
Su-Hyeong Kim and Shivendra V. Singh

Berries and Ellagic Acid Prevent Estrogen-Induced Mammary Tumorigenesis by Modulating Enzymes of Estrogen Metabolism
Harini S. Aiyer and Ramesh C. Gupta

Mortality in the Randomized, Controlled Lung Intergroup Trial of Isotretinoin

Effects of β-Carotene Supplementation on Molecular Markers of Lung Carcinogenesis in Male Smokers
Margaret E. Wright, Steve D. Groshong, Kirsti Husgafvel-Pursiainen, Erin Gerova, M. Scott Lucia, Henrik Wolff, Jarmo Virtamo, and Demetrius Albanes

Resveratrol Suppresses Oxidative Stress and Inflammatory Response in Diethylnitrosamine-Initiated Rat Hepatocarcinogenesis
Anupam Bishayee, Kendra F. Barnes, Deepak Bhatia, Altaf S. Darvesh, and Richard T. Carroll
ABOUT THE COVER

The cover images represent crystallographic structures of estrogen (left), tamoxifen (right), and raloxifene (center) bound to the ligand binding domain of estrogen receptor alpha. Helix 12 (yellow) seals estrogen (left) into the ligand binding domain, allowing full activation of estrogen. The bulky antiestrogenic side chains of tamoxifen and raloxifene prevent helix 12 from sealing and activating the estrogen receptor. The side chain of raloxifene (blue, center panel) shields and neutralizes the critical amino acid D351 (green, center panel), thus allowing few estrogen-like actions to occur in company with the strong antiestrogenic activity of raloxifene. In contrast, the tamoxifen side chain cannot shield and neutralize D351 and thus allows estrogen-like actions to occur. [The cover images appeared originally in Jordan et al., Cancer Res 2001;61:6619–23 (left and right panels), and Liu et al., Cancer Res 2001;61:3632–39 (center panel), and are reproduced with permission of the American Association for Cancer Research.] These molecular pharmacology studies relate to new, long-term follow-up results of the Study of Tamoxifen and Raloxifene (STAR), which showed strong benefit-to-risk profiles for both raloxifene and tamoxifen in preventing invasive and noninvasive breast cancer. See articles by Vogel et al. (beginning on page 696), Hortobagyi and Brown (beginning on page 681), Ravdin (beginning on page 686), and Cuzick (beginning on page 689) for more information.