Interleukin 6, but Not T Helper 2 Cytokines, Promotes Lung Carcinogenesis
Cesar E. Ochoa, Seyedeh Golsar Mirabolfathinejad, Ana Ruiz Venado, Scott E. Evans, Mihai Gagea, Christopher M. Evans, Burton F. Dickey, and Seyed Javad Moghaddam

51

Cannabinoid Receptors, CB1 and CB2, as Novel Targets for Inhibition of Non–Small Cell Lung Cancer Growth and Metastasis
Anju Preet, Zahida Qamri, Mohd W Nasser, Anil Prasad, Konstantin Shilo, Xianghong Zou, Jerome E. Groopman, and Ramesh K. Ganju

65

MicroRNAs 221/222 and Genistein-Mediated Regulation of ARHI Tumor Suppressor Gene in Prostate Cancer
Yi Chen, Mohd Saif Zaman, Guoeren Deng, Shahana Majid, Shranjot Saini, Jan Liu, Yuichiro Tanaka, and Rajvir Dahiya

87

Naftopidil, a Selective α1-Adrenoceptor Antagonist, Suppresses Human Prostate Tumor Growth by Altering Interactions between Tumor Cells and Stroma
Yasuhide Hori, Kenichiro Ishii, Hideki Kanda, Yoichi Iwamoto, Kohei Nishikawa, Norihito Soga, Hideaki Kise, Kiminobu Arima, and Yoshiaki Sugimura

107

Mcs5c: A Mammary Carcinoma Susceptibility Locus Located in a Gene Desert that Associates with Tenascin C Expression
Adeline L. Veillet, Jill D. Haag, Jane L. Remfert, Amanda L. Meilahn, David J. Samuelson, and Michael N. Gould

116

Resveratrol-Induced Apoptosis Is Mediated by Early Growth Response-1, Kruppel-Like Factor 4, and Activating Transcription Factor 3
Nichelle C. Whitlock, Jae Hoon Bahn, Seong-Ho Lee, Thomas E. Eling, and Seung Joon Baek
Acyclic Retinoid Inhibits Diethylnitrosamine-Induced Liver Tumorigenesis in Obese and Diabetic C57BLKS/J-/+Leprdb/+Leprdb Mice
Masahito Shimizu, Hiroyasu Sakai, Yohei Shirakami, Junpei Iwasa, Yoichi Yasuda, Masaya Kubota, Koji Takai, Hisashi Tsurumi, Takuji Tanaka, and Hisataka Moriwaki

A Migration Signature and Plasma Biomarker Panel for Pancreatic Adenocarcinoma

The Role of NAG-1/GDF15 in the Inhibition of Intestinal Polyps in APC/Min Mice by Sulindac
Xingya Wang, Philip J. Kingsley, Larry J. Marnett, and Thomas E. Eling

Ibuprofen Inhibits Activation of Nuclear β-Catenin in Human Colon Adenomas and Induces the Phosphorylation of GSK-3β
Emily J. Greenspan, James P. Madigan, Lisa A. Boardman, and Daniel W. Rosenberg

ABOUT THE COVER

The cover image is a photomicrograph (400X) showing intact nuclear staining for PMS2 expression in malignant colon cells. PMS2 is one of four mismatch repair proteins, including MLH1, MSH2, and MSH6, that are normally stained for immunohistochemically in screening for Lynch syndrome. Cells in this image were stained using the PMS2 antibody clone A16-4 (BD PharMingen) at a dilution of 1:300. The absence of any one of the four stains in a tumor raises suspicion of an underlying Lynch syndrome mutation in that gene. This staining approach is the most cost-effective method for screening all newly diagnosed colorectal cancer patients for Lynch syndrome. See articles by Dinh et al. (beginning on page 9) and Hampel and de la Chapelle (beginning on page 1) for more information.
Cancer Prevention Research

4 (1)


Updated version
Access the most recent version of this article at:
http://cancerpreventionresearch.aacrjournals.org/content/4/1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.