PERSPECTIVES

1 The Search for Unaffected Individuals with Lynch Syndrome: Do the Ends Justify the Means?
Heather Hampel and Albert de la Chapelle
See article by Dinh et al., p. 9

Time to Think Outside the (Genetic) Box
Jean-Pierre J. Issa and Judy E. Garber
See article by Wong et al., p. 23

RESEARCH ARTICLES

9 Health Benefits and Cost-Effectiveness of Primary Genetic Screening for Lynch Syndrome in the General Population
See perspective p. 1

23 Constitutional Methylation of the BRCA1 Promoter Is Specifically Associated with BRCA1 Mutation-Associated Pathology in Early-Onset Breast Cancer
Ee Ming Wong, Melissa C. Southey, Stephen B. Fox, Melissa A. Brown, James C. Dowie, Mark A. Jenkins, Graham G. Giles, John L. Hopper, Alexander Dobrovic
See perspective p. 6

34 Randomized Phase II Trial of Inhaled Budesonide versus Placebo in High-Risk Individuals with CT Screen-Detected Lung Nodules
Giulia Veronesi, Eva Szabo, Andrea DeCensi, Aliana Guerrieri-Gonzaga, Massimo Bellomi, Davide Radice, Stefania Ferretti, Giuseppe Pelosi, Matteo Lazzeroni, Davide Serrano, Scott M. Lippman, Lorenzo Spaggiari, Angela Nardi-Pantoli, Sergio Harari, Clara Varricchio, and Bernardo Bonanni

43 Effect of Emphysema on Lung Cancer Risk in Smokers: A Computed Tomography–Based Assessment
Yan Li, Stephen J. Swensen, Leman Günbey Karabekmez, Randolph S. Marks, Shawn M. Stoddard, Ruoxiang Jiang, Joel B. Worra, Fang Zhang, David E. Midthun, Mariza de Andrade, Yong Song, and Ping Yang

51 Interleukin 6, but Not T Helper 2 Cytokines, Promotes Lung Carcinogenesis
Cesar E. Ochoa, Seyedeh Golsar Mirabolfathinejad, Ana Ruiz Venado, Scott E. Evans, Mihai Gagea, Christopher M. Evans, Burton F. Dickey, and Seyed Javad Moghaddam

65 Cannabinoid Receptors, CB1 and CB2, as Novel Targets for Inhibition of Non–Small Cell Lung Cancer Growth and Metastasis
Anju Preet, Zahida Qamri, Mohd W Nasser, Anil Prasad, Konstantin Shilo, Xianghong Zou, Jerome E. Groopman, and Ramesh K. Ganju

76 MicroRNAs 221/222 and Genistein-Mediated Regulation of ARH1 Tumor Suppressor Gene in Prostate Cancer
Yi Chen, Mohd Saif Zaman, Guoren Deng, Shahana Majid, Shranjot Saini, Jan Liu, Yuichiro Tanaka, and Rajvir Dahiya

87 Naftopidil, a Selective α1-Adrenoceptor Antagonist, Suppresses Human Prostate Tumor Growth by Altering Interactions between Tumor Cells and Stroma
Yasuhide Hori, Kenichiro Ishii, Hideki Kanda, Yoichi Iwamoto, Kohei Nishikawa, Norihiro Soga, Hideaki Kise, Kiminobu Arima, and Yoshihito Sugimura

97 Mcc5c: A Mammary Carcinoma Susceptibility Locus Located in a Gene Desert that Associates with Tenascin C Expression
Adeline L. Veillet, Jill D. Haag, Jane L. Remfert, Amanda L. Meilahn, David J. Samuelson, and Michael N. Gould

107 Estrogen and Cytochrome P450 1B1 Contribute to Both Early- and Late-Stage Head and Neck Carcinogenesis
Ekaterina G. Shatalova, Andres J.P. Klein-Szanto, Karthik Devarajan, Edna Cukierman, and Margie L. Clapper

116 Resveratrol-Induced Apoptosis Is Mediated by Early Growth Response-1, Kruppel-Like Factor 4, and Activating Transcription Factor 3
Nichele C. Whitlock, Jae Hoon Bahn, Seong-Ho Lee, Thomas E. Eling, and Seung Joon Back
Acyclic Retinoid Inhibits Diethylnitrosamine-Induced Liver Tumorigenesis in Obese and Diabetic C57BLKS/J-+Lepr^db/+Lepr^db Mice
Masahito Shimizu, Hiroyasu Sakai, Yohei Shirakami, Junpei Iwasa, Yoichi Yasuda, Masaya Kubota, Koji Takai, Hisashi Tsurumi, Takuji Tanaka, and Hisataka Moriwaki

A Migration Signature and Plasma Biomarker Panel for Pancreatic Adenocarcinoma

The Role of NAG-1/GDF15 in the Inhibition of Intestinal Polyps in APC/Min Mice by Sulindac
Xingya Wang, Philip J. Kingsley, Larry J. Marnett, and Thomas E. Eling

Ibuprofen Inhibits Activation of Nuclear β-Catenin in Human Colon Adenomas and Induces the Phosphorylation of GSK-3β
Emily J. Greenspan, James P. Madigan, Lisa A. Boardman, and Daniel W. Rosenberg

ABOUT THE COVER

The cover image is a photomicrograph (400X) showing intact nuclear staining for PMS2 expression in malignant colon cells. PMS2 is one of four mismatch repair proteins, including MLH1, MSH2, and MSH6, that are normally stained for immunohistochemically in screening for Lynch syndrome. Cells in this image were stained using the PMS2 antibody clone A16-4 (BD PharMingen) at a dilution of 1:300. The absence of any one of the four stains in a tumor raises suspicion of an underlying Lynch syndrome mutation in that gene. This staining approach is the most cost-effective method for screening all newly diagnosed colorectal cancer patients for Lynch syndrome. See articles by Dinh et al. (beginning on page 9) and Hampel and de la Chapelle (beginning on page 1) for more information.