Effects of Supplemental Vitamin D and Calcium on Biomarkers of Inflammation in Colorectal Adenoma Patients: A Randomized, Controlled Clinical Trial

Myfanwy H. Hopkins1,3, Joy Owen1, Thomas Ahearn1, Veronika Fedirko1,4, W. Dana Flanders1,2, Dean P. Jones3,5, and Roberd M. Bostick1,3,4

Abstract

Vitamin D and calcium affect several pathways involved in inflammation, tumor growth, and immune surveillance relevant to carcinogenesis. Also, epidemiologic evidence indicates that calcium and vitamin D may reduce risk for developing colorectal adenomas and cancer. To investigate the effects of calcium and vitamin D on biomarkers of inflammation in colorectal adenoma patients, we conducted a pilot, randomized, double-blind, placebo-controlled, 2 × 2 factorial clinical trial (n = 92) of 2 g/d calcium and/or 800 IU/d vitamin D3 supplementation versus placebo over 6 months. Plasma concentrations of proinflammatory markers [C-reactive protein (CRP), TNF-α, interleukin (IL)-6, IL-1β, and IL-8] and an anti-inflammatory marker (IL-10) were measured using ELISAs. After 6 months of treatment, in the vitamin D3 supplementation group, CRP decreased 32% overall (P = 0.11), 37% in men (P = 0.05), and 41% among non–nonsteroidal anti-inflammatory drug (NSAID) users (P = 0.05) relative to placebo. In the vitamin D3 supplementation group, TNF-α decreased 13%, IL-6 32%, IL-1β 50%, and IL-8 15%; in the calcium supplementation group, IL-6 decreased 37%, IL-8 11%, and IL-1β 27%. Although these changes were not statistically significant, a combined inflammatory markers z-score decreased 77% (P = 0.003) in the vitamin D3 treatment group overall, 83% (P = 0.01) among men, and 48% among non-NSAID users (P = 0.01). There was no evidence of synergy between vitamin D3 and calcium or effects on IL-10. These preliminary results are consistent with a pattern of reduction in tumor-promoting inflammation biomarkers with vitamin D3 or calcium supplementation alone and support further investigation of vitamin D3 as a chemopreventive agent against inflammation and colorectal neoplasms. Cancer Prev Res; 4(10); 1645–54. ©2011 AACR.

Introduction

Colorectal cancer (CRC) is the second leading cause of cancer mortality in the United States and is consistently inversely associated with calcium intake and serum vitamin D levels (1–9). Inflammation is intricately linked to the etiology of CRC and may also be a key in understanding the mechanisms linking calcium and vitamin D to CRC risk reduction. Inflammatory conditions such as Crohn’s disease and ulcerative colitis are established risk factors for CRC, nonsteroidal anti-inflammatory drug (NSAID) use reduced both polyposis in patients with familial adenomatous polyposis and sporadic colorectal adenoma recurrence in clinical trials, and specific proinflammatory markers such as C-reactive protein (CRP), TNF-α, and interleukin (IL)-6 are elevated in inflammatory bowel disease patients (10–14). These inflammatory markers are also associated with neoplastic growth, higher tumor grade, and increased risk of mortality in CRC patients (11, 12, 15–19). In addition, in a case–control study, risk factors for colorectal adenomas, such as old age, smoking, and adiposity, were found to be associated with higher levels of these inflammatory markers (10).

The mechanisms by which calcium is proposed to reduce risk for developing CRC are closely related to inflammation. Calcium binds to free fatty acids and bile acids, precipitating them from solution in the colon, which is hypothesized to reduce oxidative stress and inflammation in the colon (20). Calcium also activates the calcium sensing receptor, which is involved in cell-cycle events and differentiation, and promotes cell–cell and cell–matrix adhesion (21, 22). Vitamin D, along with increasing the absorption of calcium and regulating calcium homeostasis, also regulates more than 200 genes through the vitamin D receptor (VDR). Activation of the VDR is involved in bile

References

1. Roberd M. Bostick. Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road Northeast, Atlanta, GA 30322. Phone: 404-727-2671; Fax 404-727-8737; E-mail: rmbosei@sphealth.emory.edu

doi: 10.1158/1940-6207.CAPR-11-0105
©2011 American Association for Cancer Research.
acid degradation, direct transcriptional regulation of several inflammatory cytokines, cell-cycle regulation, DNA repair, differentiation, and apoptosis (22, 23).

Despite the basic science evidence, there are no published trials of the effects of vitamin D and/or calcium supplementation on blood markers of inflammation in patients at risk for developing CRC. To address this, we conducted a pilot, randomized, double-blind, placebo-controlled 2 × 2 factorial chemoprevention trial of calcium and vitamin D₃ supplementation, alone or in combination, versus placebo over 6 months to estimate their effects on a panel of circulating pro- and anti-inflammatory markers in patients with a history of sporadic colorectal adenoma. We hypothesized that vitamin D₃ and calcium, alone or in combination, would decrease tumor-promoting proinflammatory markers and increase tumor-inhibiting, anti-inflammatory markers.

Materials and Methods

This study was approved by the Emory University Institutional Review Board. Written informed consent was obtained from each study participant.

Study population

The detailed protocol of study recruitment and procedures was published previously (24). Briefly, study participants were recruited from the patient population attending the Digestive Diseases Clinic of Emory University. Eligibility included age 30 to 75 years, in good general health, capable of informed consent, and at least 1 pathology-confirmed sporadic colon or rectal adenoma in the past 36 months. Exclusions included contraindications to calcium or vitamin D₃ supplementation or rectal biopsy procedures, and medical conditions, habits, or medication usage that would otherwise interfere with the study (24).

Clinical trial protocol

Between April 2005 and January 2006, potential participants attended an eligibility visit during which they were interviewed, signed a consent form, completed questionnaires, provided a blood sample, and were entered into a 30-day placebo run-in trial (24). Diet was assessed with a semiquantitative food frequency questionnaire (25). After the 30-day placebo run-in trial, 92 participants without significant perceived side effects who had taken at least 80% of their capsules during the run-in trial were eligible for randomization. Eligible participants then underwent a baseline blood draw and rectal biopsy and were randomly assigned identically. A single ELISA (R&D Systems) was used to measure CRP, in duplicate, according to the manufacturer’s protocol. The average intra-assay coefficient of variation (CV) for CRP was 6.6%. A high-sensitivity multiplex ELISA (R&D Systems) was used to measure TNF-α, IL-6, IL-1β, IL-8, IL-5, IL-4, VEGF, IL-2, IL-10, IL-12, granulocyte macrophage colony-stimulating factor (GM-CSF), and IFN-γ, in duplicate, according to the manufacturer’s protocol. The average intra-assay CV for TNF-α was 11.5%, for IL-6 11.7%, for IL-1β 10.6%, for IL-8 7.9%, for IL-5 34.1%, for IL-4 39.4%, for VEGF 21.0%, for IL-2 45.0%, for IL-10 11.5%, for IL-12 24.5%, and for GM-CSF 38.5%. Low plasma cytokine concentrations create very high variability, and the results for cytokines with CVs above 15% were considered too variable and inaccurate to be reported.

Inflammation biomarker analyses

All samples were blinded to treatment group and treated identically. A single ELISA (R&D Systems) was used to measure CRP, in duplicate, according to the manufacturer’s protocol. The average intra-assay coefficient of variation (CV) for CRP was 6.6%. A high-sensitivity multiplex ELISA (R&D Systems) was used to measure TNF-α, IL-6, IL-1β, IL-8, IL-5, IL-4, VEGF, IL-2, IL-10, IL-12, granulocyte macrophage colony-stimulating factor (GM-CSF), and IFN-γ, in duplicate, according to the manufacturer’s protocol. The average intra-assay CV for TNF-α was 11.5%, for IL-6 11.7%, for IL-1β 10.6%, for IL-8 7.9%, for IL-5 34.1%, for IL-4 39.4%, for VEGF 21.0%, for IL-2 45.0%, for IL-10 11.5%, for IL-12 24.5%, and for GM-CSF 38.5%. Low plasma cytokine concentrations create very high variability, and the results for cytokines with CVs above 15% were considered too variable and inaccurate to be reported.
Statistical analysis

Treatment groups were assessed for comparability of characteristics at baseline and final follow-up by the Fisher exact test for categorical variables and ANOVA for continuous variables. ELISA reliability was assessed using CVs.

Primary analyses were based on assigned treatment at the time of randomization regardless of adherence (intent-to-treat analysis). Biomarker levels below the limits of detection were assigned a value equal to the lower limit of detection for that biomarker. Variables not normally distributed were transformed, as appropriate, before statistical testing. Mean biomarker concentrations were calculated for each treatment group for the baseline and 6-month follow-up visits. Treatment effects were evaluated by assessing the differences in biomarker concentrations from baseline to 6-month follow-up between each active treatment group and the placebo group by a repeated-measures linear mixed-effects model, as implemented using the Proc MIXED procedure of the Statistical Analysis System (SAS, version 9.2; SAS Institute Inc.). The model included the intercept, indicators for treatment group and visit (baseline and follow-up), and a treatment by visit interaction term. Study participant was treated as a random effect, and absolute treatment effects were calculated and reported. A cutoff level of \(P \leq 0.05 \) (2-sided) was used for assessing statistical significance. Because concentrations of the measured biomarkers in plasma are not widely familiar, to provide perspective on the magnitude of treatment effects, relative effects were also calculated, defined as [(treatment group follow-up/treatment group baseline)/(placebo follow-up/placebo baseline)]; refs. (24, 26)]. The relative effect provides a conservative estimate of the average proportional change in the treatment group relative to that in the placebo group. The interpretation of the relative effect is somewhat analogous to that of an OR (e.g., a relative effect of 2.0 means that the relative proportional change in the treatment group was twice as great as that in the placebo group). Stratified analyses were conducted to investigate potential differential treatment effects by sex, age, body mass index (BMI), and NSAID use.

To assess the effects of vitamin D3 and/or calcium supplementation on a summary score of all the pro- and anti-inflammatory markers combined, a summary inflammation z-score was calculated. This score was calculated as follows: first, a normalized z-score for each individual biomarker value, with a mean of zero and SD of 1.0, was calculated as \(z = (x - \mu)/\sigma \), where \(x \) is a participant’s biomarker value at a given visit, and \(\mu \) and \(\sigma \) are the study population mean and SD, respectively, at baseline; and then the combined inflammation z-score for each participant at each trial visit was created by summing the z-scores of each inflammatory marker (IL-10 was included with a negative sign, because it has been shown to protect against colonic inflammation (27)]. This inflammation z-score was then analyzed as that for the individual biomarkers.

Results

Study participants

Treatment groups were quite similar on characteristics measured at baseline (Table 1) or at final follow-up (data not shown; in particular, there was no change in NSAID use by treatment group over the course of the trial). The mean age of participants was 61 years, 70% were men, 71% were white, and 20% had a family history of CRC in a first-degree relative. Adherence to visit attendance averaged 92% and did not differ significantly among the 4 treatment groups. On average, at least 80% of pills were taken by 93% of participants at the first follow-up visit and 84% at the final follow-up visit. There were no complications attributed to study procedures or treatments. Seven participants (8%) were lost to follow-up due to perceived drug intolerance (\(n = 2 \)), unwillingness to continue participation (\(n = 3 \)), physician’s advice (\(n = 1 \)), and death attributed to cardiovascular disease (\(n = 1 \)). Participant dropouts from the trial included 1 person from the vitamin D3 supplementation group and 2 persons from each of other 3 groups.

At baseline, there were no significant differences between the 4 study groups in serum 25-hydroxy vitamin D (25-OH-vitamin D). By study end, serum 25-OH-vitamin D levels statistically significantly (\(P < 0.0001 \)) increased by 60% to 29.5 ng/mL in the vitamin D3 group and by 56% to 28.5 ng/mL in the calcium plus vitamin D3 group relative to placebo (24).

Changes in CRP, TNF-\(\alpha \), IL-6, IL-1\(\beta \), IL-8, and IL-10 plasma concentrations relative to placebo in the calcium, vitamin D3, or combined supplementation groups are shown in Table 2. After 6 months of treatment, in the vitamin D3 supplementation group, CRP decreased by 32%, TNF-\(\alpha \) by 13%, IL-6 by 32%, IL-1\(\beta \) by 50%, and IL-8 by 15%, relative to placebo, although these changes were not statistically significant. In the calcium supplementation group, relative to placebo, CRP decreased 8%, IL-6 decreased 37%, IL-8 by 11%, and IL-1\(\beta \) by 27%, although these changes were also not statistically significant. In the vitamin D3 plus calcium supplementation group, IL-6 decreased by 8%, IL-8 by 13%, and IL-1\(\beta \) by 35%, relative to placebo, although these changes were not statistically significant. IL-10 decreased by a minor and nonsignificant amount in all active treatment groups.

The effects of vitamin D3 and/or calcium on the combined "inflammation z-score" of all reported inflammatory markers (CRP, TNF-\(\alpha \), IL-6, IL-8, IL-1\(\beta \), and IL-10) are summarized in Table 3. An individual’s inflammation z-score allows for the calculation of an aggregate score of all biomarkers by converting them to a comparable score, a z-score, and then totaling the values for each individual. The overall inflammation z-score significantly dropped 77% (\(P = 0.003 \)) in the vitamin D3 treatment group, 48% (\(P = 0.18 \)) in the calcium treatment group, and 33% (\(P = 0.40 \)) in the combined treatment group relative to placebo.

Men and women have differences in their biochemical makeup (such as estrogen levels) that could lead to differ-
ences in response to vitamin D and calcium supplementation; therefore, we investigated potential differences in response by sex (Table 4). In men, CRP decreased 37% (P = 0.05) in the vitamin D3 treatment group relative to placebo but did not change substantially in women. Similar to the results for CRP, the inflammation z-score statistically significantly dropped in men (83%, P = 0.01) but not in women in the vitamin D3 treatment group relative to placebo. Changes in TNF-α, IL-6, IL-8, IL-1β, and IL-10 did not differ substantially by sex (data not shown).

Because NSAID use may overwhelmingly affect inflammation pathways, we investigated the effects of vitamin D3 and calcium among study participants who were not currently taking NSAIDs (Table 4). In non-NSAID users, the decrease in CRP (41%, P = 0.05) was slightly stronger than in all participants combined (32%, P = 0.11) in the vitamin D3 treatment group relative to placebo. The inflammation z-score also decreased significantly by 58% (P = 0.01) among non-NSAID users in the vitamin D3 treatment group. Changes in TNF-α, IL-6, IL-8, IL-1β, and IL-10 among non-NSAID users did not differ substantially from changes among all participants combined (data not shown).

Discussion

The results from this pilot, randomized, controlled clinical trial suggest that supplementation with vitamin D3 or calcium alone may decrease tumor-promoting proinflammatory markers in the plasma of sporadic colorectal adenoma patients. These findings are consistent with the hypothesis that vitamin D3 or calcium may decrease inflammation in the colon and thus reduce risk for colorectal neoplasms. Consistent with previous findings in this same study on oxidative DNA damage in the normal colorectal mucosa (28), our findings also suggest that vitamin D3 combined with calcium may have a lesser treatment effect on proinflammatory markers than do vitamin D3 or calcium alone.

Inflammation is intricately linked to the etiology of CRC, as evidenced by inflammatory conditions of the colon, such as Crohn’s disease and ulcerative colitis, which are
increased mortality among CRC patients (11). In a case–
control study, polymorphisms in the genes for IL-6, TNF-α, IL-1β, and IL-8 that are linked to increased expression of their corresponding cytokines were associated with increased adenoma risk (18, 30). IL-1β is involved in COX-2 activation and activates the Wnt cell-cycle activation pathway, the primary pathway of colon cell proliferation (31). Vitamin D3 inhibited this pathway in vitro by decreasing IL-1β production by macrophages, thus decreasing colon carcinoma cell proliferation (31).

established risk factors for the disease (29). Several inflammatory molecules, including CRP, TNF-α, IL-6, and IL-8, were found to be higher in the blood of CRC patients than in controls (11, 12, 19) and have been associated with other risk factors for CRC, such as age, smoking, and high BMI (10). In addition, CRP, TNF-α, and IL-6 are associated with higher tumor grade and poorer prognosis (15, 19), and higher levels of CRP and IL-6 are associated with increased mortality among CRC patients (11). In a case-

Table 2. Changes in biomarkers of inflammation in plasma of colorectal adenoma patients

<table>
<thead>
<tr>
<th>Biomarkers</th>
<th>Baseline</th>
<th>6-mo follow-up</th>
<th>Absolute treatment effect</th>
<th>Relative treatment effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n Mean</td>
<td>SD Pd</td>
<td>n Mean</td>
<td>SD Pd</td>
</tr>
</tbody>
</table>

Proinflammatory
CRP, µg/mL
Placebo 22 1.77 3.80 N/A 21 1.88 4.16 0.77 N/A N/A N/A 1.00
Calcium 21 1.13 3.50 0.21 21 1.09 4.32 0.85 −0.09 (−0.40 to 0.56) 0.71 0.92
Vitamin D 22 1.39 2.79 0.49 22 0.99 1.97 0.05 −0.39 (−0.91 to 0.86) 0.11 0.68
Calcium + vitamin D 21 1.93 2.94 0.82 21 2.21 3.06 0.42 0.08 (−0.40 to 0.57) 0.74 1.09
TNF-α, pg/mL
Placebo 23 4.13 1.92 N/A 21 4.57 2.05 0.09 N/A N/A N/A 1.00
Calcium 23 3.04 1.94 0.28 21 3.35 1.88 0.67 0.06 (−0.21 to 0.33) 0.66 1.06
Vitamin D 22 2.92 1.78 0.09 22 2.73 2.52 0.46 −0.14 (−0.40 to 0.13) 0.30 0.87
Calcium + vitamin D 23 3.62 1.75 0.50 21 4.00 1.62 0.28 0.03 (−0.23 to 0.30) 0.81 1.03
IL-6, pg/mL
Placebo 23 1.13 4.54 N/A 21 1.41 2.67 0.30 N/A N/A N/A 1.00
Calcium 23 1.09 3.65 0.45 21 0.85 3.29 0.27 −0.46 (−1.07 to 0.14) 0.13 0.63
Vitamin D 22 0.78 4.68 0.42 22 0.67 3.76 0.47 −0.38 (−0.98 to 0.23) 0.22 0.68
Calcium + vitamin D 23 1.39 4.49 0.63 21 1.62 3.25 0.50 −0.08 (−0.69 to 0.53) 0.80 0.92
IL-8, pg/mL
Placebo 23 4.74 1.59 N/A 21 5.01 1.78 0.10 N/A N/A N/A 1.00
Calcium 23 5.97 1.72 0.51 21 5.34 1.52 0.67 −0.12 (−0.49 to 0.22) 0.45 0.89
Vitamin D 22 5.60 1.52 0.30 22 5.03 1.79 0.62 −0.15 (−0.62 to 0.08) 0.13 0.85
Calcium + vitamin D 23 5.61 1.68 0.63 21 5.09 1.54 0.60 −0.14 (−0.50 to 0.21) 0.42 0.87
IL-1β, pg/mL
Placebo 23 0.22 2.03 N/A 21 0.23 2.64 0.56 N/A N/A N/A 1.00
Calcium 23 0.27 3.82 0.56 21 0.22 3.06 0.62 −0.32 (−1.16 to 0.51) 0.44 0.73
Vitamin D 22 0.16 2.04 0.30 22 0.13 2.28 0.07 −0.70 (−1.53 to 0.12) 0.09 0.50
Calcium + vitamin D 23 0.27 2.62 0.59 21 0.23 2.24 0.40 −0.43 (−1.27 to 0.41) 0.31 0.65
Anti-inflammatory
IL-10, pg/mL
Placebo 23 0.54 1.57 N/A 21 0.53 1.96 0.63 N/A N/A N/A 1.00
Calcium 23 0.58 1.68 0.63 21 0.50 1.56 0.16 −0.07 (−0.29 to 0.15) 0.52 0.93
Vitamin D 22 0.48 1.53 0.37 22 0.43 1.38 0.23 −0.05 (−0.27 to 0.16) 0.62 0.95
Calcium + vitamin D 23 0.26 1.49 0.66 21 0.55 1.55 0.35 −0.04 (−0.26 to 0.19) 0.75 0.96

a Absolute treatment effect is the absolute change from baseline to follow-up in the treatment group minus the absolute change from baseline to follow-up in the placebo group from mixed model.
b Relative treatment effect is defined as follows: (treatment group follow-up/treatment group baseline)/(placebo follow-up/placebo baseline). The interpretation of the relative effect is similar to that of an OR (e.g., a relative effect of 2.0 would mean that the relative proportional change in the treatment group was twice as great as that in the placebo group).
c Geometric means with standard errors are reported, calculated by exponentiating the mean of the log-transformed values.
Calcium and vitamin D have several mechanisms of action relevant to our hypothesis that they may decrease inflammatory markers and risk for developing CRC. Only about 30% of calcium is absorbed in the gastrointestinal tract, with the other 70% free to bind with and precipitate bile acids, which have been shown to cause damage to epithelial cell membranes and produce an inflammatory response in these cells (32, 33). This inflammatory response, in turn, may represent a large source of circulating cytokines. Vitamin D, acting through the vitamin D receptor, also reduces bile acids in the colon by increasing the bile acid–catabolizing enzyme CYP3A4 (21, 34). 1,25-Dihydroxycholecalciferol or 1,25-dihydroxyvitamin D3 [1-25-(OH)2-vitamin D3] binding of the vitamin D receptor acts as a transcriptional regulator to enhance IL-10 transcription and represses several proinflammatory cytokines, including IL-6, IL-8, and TNF-α (26, 35). In addition, the vitamin D receptor, when activated by vitamin D, suppresses the transcription of RelB, a component of the global transcriptional regulator nuclear factor kappaB (NF-kB; ref. 36), a key regulator of inflammation and response to oxidative stress and a downstream target of TNF-α (37). NF-kB induces the transcription of inflammatory cytokines and antiapoptotic proteins that together promote cellular transformation and tumor formation (38). Mice lacking IL-10 quickly develop inflammatory bowel disease, but supplementation with vitamin D3 ameliorated symptoms and blocked the progression of the disease (27). Combined with this biological evidence, the results of our study support vitamin D3 and calcium as possible inflammation-reducing agents in humans.

Contrary to our original hypothesis, the findings of some epidemiologic and clinical studies, we found no evidence for a greater than additive effect of combined supplementation of calcium and vitamin D3 (28, 39–42). Our estimated treatment effects in the calcium plus vitamin D3 group tended to be less than those for the individual agents. In this same population, we previously reported that combined calcium and vitamin D3 supplementation may have lesser effects on colorectal epithelial apoptosis, differentiation, and oxidative DNA damage than do calcium or vitamin D3 alone (24, 28, 43). These statistically nonsignificant findings of a smaller treatment effect in the combined treatment group may simply be due to chance because of our small sample size. However, given the consistency of this pattern, it is possible that calcium and vitamin D negatively regulate one another. 1,25-(OH)2-vitamin D3 regulates calcium absorption, and calcium suppresses 1,25-(OH)2-vitamin D3 synthesis by 1α-hydroxylase (44). One animal study found that high calcium supplementation led to lower circulating levels of 25-OH-vitamin D (34); however, in humans, risk of adenoma recurrence was only decreased by calcium supplementation in individuals with higher serum 25-OH-vitamin D levels (40). In human colon carcinoma cells, calcium and vitamin D synergistically enhanced the expression of E-cadherin; however, the enhanced expression of p21 and p27 by calcium and vitamin D separately was not changed with a combined treatment (45). Another possible explanation for the less than additive effects of calcium plus vitamin D3 is that too little vitamin D3 was given. Although 800 IU daily vitamin D3 supplementation in this population statistically significantly raised serum 25-OH-vitamin D levels, the mean in all treatment and placebo groups was below 32 ng/mL, the suggested level to inhibit progression of colorectal cancer (28, 39). We considered this lower serum level of vitamin D3 as a possible explanation for the less than additive effect of calcium plus vitamin D3. However, other studies have suggested that vitamin D3 concentrations above 50 ng/mL (20 ng/mL in the Asian population) are needed to effectively lower serum markers of inflammation (40). The lower serum levels of vitamin D3 in our study may have also reduced the overall effects of combined treatment with vitamin D3 and calcium. In addition, the benefit of combining calcium and vitamin D3 may be due to different mechanisms of action of these two agents. Our results also support vitamin D3 and calcium as possible inflammation-reducing agents in humans.
Calcium and vitamin D have several known and likely unknown downstream targets involved in inflammation regulation as discussed earlier and therefore biological effects of these agents may be best measured using a combined detection method. We developed an inflammation z-score to assess the inflammation status of an individual more comprehensively and then analyzed the effects of calcium and/or vitamin D₃ on this inflammation z-score. We hypothesized that vitamin D₃ and/or calcium would affect this inflammation z-score more substantially than any single measure of inflammation. Vitamin D₃, but not calcium or the 2 combined, significantly reduced the inflammation z-score in this study population by 77% (P = 0.003) relative to placebo. This finding suggests that

<table>
<thead>
<tr>
<th>Table 4. Changes in plasma CRP and inflammation z-score levels stratified by sex and NSAID use in colorectal adenoma patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP, μg/mL</td>
</tr>
<tr>
<td>Women</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Vitamin D</td>
</tr>
<tr>
<td>Calcium + vitamin D</td>
</tr>
<tr>
<td>Men</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Vitamin D</td>
</tr>
<tr>
<td>Calcium + vitamin D</td>
</tr>
<tr>
<td>Non-NSAID users</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Vitamin D</td>
</tr>
<tr>
<td>Calcium + vitamin D</td>
</tr>
<tr>
<td>Inflammation z-score</td>
</tr>
<tr>
<td>Women</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Vitamin D</td>
</tr>
<tr>
<td>Calcium + vitamin D</td>
</tr>
<tr>
<td>Men</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Vitamin D</td>
</tr>
<tr>
<td>Calcium + vitamin D</td>
</tr>
<tr>
<td>Non-NSAID users</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Vitamin D</td>
</tr>
<tr>
<td>Calcium + vitamin D</td>
</tr>
</tbody>
</table>

^aAbsolute treatment effect is the absolute change from baseline to follow-up in the treatment group minus the absolute change from baseline to follow-up in the placebo group from mixed model.

^bRelative treatment effect is defined as: (treatment group follow-up/treatment group baseline)/(placebo follow-up/placebo baseline).

^cP values for difference between each treatment group and the placebo group from mixed model.

^dNSAID user status at baseline (NSAID use by treatment group did not change during the course of the trial).

^eInflammation z-score: z-score of pro- and anti-inflammatory markers (CRP, IL6, IL-1β, TNF-α, IL-8, and IL-10) calculated by subtracting the mean and dividing by the SD (thus creating a mean of zero and SD of 1.0) for each participant’s individual biomarker value at each visit and then summing the biomarker z-score values for each participant at each visit (IL-10 was included with a negative sign).
vitamin D₃ may reduce inflammation in multifactorial ways. Inflammatory markers, including CRP, IL-6, and TNF-α, were found to be significantly higher in CRC patients than in controls (11, 12, 19); however, it is not known whether these individual markers are also elevated in colorectal adenoma patients. We propose the use of this inflammation z-score to measure subclinical inflammation or to detect small changes in multiple cytokines that combined may produce clinically important changes in inflammation and risk for developing disease. Further investigation is needed, however, and this score should be explored in cohort and case–control studies to investigate whether it is associated with risk for developing colorectal adenomas or cancer, as well as in larger chemoprevention trials to investigate its usefulness as an intervention response marker.

In our analysis stratified by sex, there was a significant reduction in CRP and the inflammation z-score with vitamin D₃ supplementation in men but not in women. There are several possible explanations for this, the most obvious one being chance related to the small sample size, especially in women. Another possible explanation is that most women in this study were postmenopausal and not taking hormone replacement therapy and therefore likely had low estrogen levels. Estrogen supplementation was found to increase 1-25-(OH)₂-vitamin D signaling and downregulate inflammation pathways in the rectal epithelium of postmenopausal women (47). The findings of our study support the hypothesis that low estrogen levels may interfere with response to vitamin D supplementation, VDR signaling, and inflammatory pathways; however, larger studies are needed to investigate these issues more definitively.

When only non-NSAID users were considered, CRP and the inflammation z-score were found to be statistically significantly reduced with vitamin D₃ supplementation. Other than chance due to the small sample size, a possible explanation is that NSAIDs have powerful effects on inflammation pathways that could mask effects of vitamin D₃ or calcium. NSAIDs largely reduce risk for developing CRC by blocking a major colon carcinogenesis and inflammatory pathway enzyme, COX-2 (48, 49). Vitamin D supplementation effects on inflammation may only be detectable and important in individuals not already using NSAIDs, although more investigation is needed to clarify this issue.

Our pilot study has several limitations and strengths. First, the sample size was small, limiting the statistical power for detecting treatment effects. A second potential limitation to the study is that all of the blood biomarker analyses except for CRP were done using a high-sensitivity multiplex ELISA. Although the low limit of detection for a higher number of samples with detectable analytes, the measurements may have been less reliable and accurate than they would with a lower limit of detection.

In summary, our preliminary findings suggest vitamin D₃ or calcium alone may decrease tumor-promoting proinflammatory markers in the plasma of sporadic colorectal adenoma patients. Also, taken together with previous literature, this study supports further investigation of (a) vitamin D₃ or calcium supplementation for reducing inflammatory biomarkers in sporadic colorectal adenoma patients, (b) our investigated biomarkers of inflammation or a combined inflammation z-score as potential treatable biomarkers of risk for developing CRC, and (c) a larger trial with higher doses of vitamin D₃ on biomarkers of inflammation and risk for developing colorectal neoplasms.

Disclosure of Potential Conflicts of Interest

The NIH, the Georgia Cancer Coalition, and the Franklin Foundation had no influence on the design of the study, the collection, analysis, and interpretation of the data; the decision to submit the manuscript for publication; or the writing of the manuscript.

Acknowledgments

We thank Bill Liang for equipment management and advice, Jill Woodward for managing the trial, and all study participants for their time and dedication to the study.

Grant Support

This study was funded in part by grants from the NIH, the Franklin Foundation, and a Georgia Cancer Coalition Distinguished Scholar Award (to R.M. Bostick); R01 CA104637/CA/NCI NIH HHS/United States; R03 CA136113/CA/NCI NIH HHS/United States; and The Franklin Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article therefore is hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 28, 2011; revised June 13, 2011; accepted June 15, 2011; published OnlineFirst June 30, 2011.

References

Vitamin D, Inflammation, and Colon Cancer

Cancer Prevention Research

Effects of Supplemental Vitamin D and Calcium on Biomarkers of Inflammation in Colorectal Adenoma Patients: A Randomized, Controlled Clinical Trial

Updated version Access the most recent version of this article at: doi:10.1158/1940-6207.CAPR-11-0105

Cited articles This article cites 47 articles, 25 of which you can access for free at: http://cancerpreventionresearch.aacrjournals.org/content/4/10/1645.full.html#ref-list-1

Citing articles This article has been cited by 15 HighWire-hosted articles. Access the articles at: /content/4/10/1645.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.