Combination of Atorvastatin with Sulindac or Naproxen Profoundly Inhibits Colonic Adenocarcinomas by Suppressing the p65/β-Catenin/Cyclin D1 Signaling Pathway in Rats

Nanjo Suh1,4, Bandaru S. Reddy1, Andrew DeCastro1, Shiby Paul1, Hong Jin Lee1, Amanda K. Smolarek1, Jae Young So1, Barbara Simi1, Chung Xiou Wang1, Naveena B. Janakiram2, Vernon Steele3, and Chinthalapally V. Rao2

Abstract
Evidence supports the protective role of nonsteroidal anti-inflammatory drugs (NSAID) and statins against colon cancer. Experiments were designed to evaluate the efficacies atorvastatin and NSAIDs administered individually and in combination against colon tumor formation. F344 rats were fed AIN-76A diet, and colon tumors were induced with azoxymethane. One week after the second azoxymethane treatment, groups of rats were fed diets containing atorvastatin (200 ppm), sulindac (100 ppm), naproxen (150 ppm), or their combinations with low-dose atorvastatin (100 ppm) for 45 weeks. Administration of atorvastatin at 200 ppm significantly suppressed both adenocarcinoma incidence (52% reduction, \(P = 0.005 \)) and multiplicity (58% reduction, \(P = 0.008 \)). Most importantly, colon tumor multiplicities were profoundly decreased (80%–85% reduction, \(P < 0.0001 \)) when given low-dose atorvastatin with either sulindac or naproxen. Also, a significant inhibition of colon tumor incidence was observed when given a low-dose atorvastatin with either sulindac (\(P = 0.001 \)) or naproxen (\(P = 0.0005 \)). Proliferation markers, proliferating cell nuclear antigen, cyclin D1, and β-catenin in tumors of rats exposed to sulindac, naproxen, atorvastatin, and/or combinations showed a significant suppression. Importantly, colon adenocarcinomas from atorvastatin and NSAIDs fed animals showed reduced key inflammatory markers, inducible nitric oxide synthase and COX-2, phospho-p65, as well as inflammatory cytokines, TNF-α, interleukin (IL)-1β, and IL-4. Overall, this is the first report on the combination treatment using low-dose atorvastatin with either low-dose sulindac or naproxen, which greatly suppress the colon adenocarcinoma incidence and multiplicity. Our results suggest that low-dose atorvastatin with sulindac or naproxen might potentially be useful combinations for colon cancer prevention in humans. Cancer Prev Res; 4(11); 1895–902. ©2011 AACR.
effective agents in suppressing colon cancer in animals (7, 16, 24). Azoxymethane-induced tumors result from mutations in the Wnt/β-catenin pathway (28–30). Aberrant expression of β-catenin can be regarded as a key event during colorectal tumorigenesis (31) and is linked to the increased transcription of a number of genes such as cyclin D1 (32, 33). Cyclin D1 is overexpressed in patients with adenomatous polyposis, primary colorectal adenocarcinoma, and familial adenomatous polyposis (32, 34). Cyclin D1 is a target gene of the Wnt signaling pathway (35), and mutations in this pathway are responsible for approximately 90% of colorectal cancer (36). Mutations in genes belonging to the Wnt pathway, such as inactivating mutations in the adenomatous polyposis coli (APC) gene or activating mutations in β-catenin, result in the nuclear accumulation of β-catenin and subsequent complex formation with T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors to activate gene transcription (37). TCF/LEF-binding sites on promoters of cell proliferation genes, such as cyclin D1 and c-MYC (35, 38), thus serve to transmit the aberrant mutations to tumorigenic signals within the colonic crypts.

As discussed above, we and others have shown the chemopreventive effects of statins and number of NSAIDs (7, 16, 20, 23, 24, 39). However, many of these studies used higher dose levels and also lack efficacy data on the most commonly used NSAID, naproxen, in the colon cancer model is available. Importantly, our aim to establish effective agents in suppressing colon cancer in animals. Thus, in the present study, experiments were designed to evaluate the efficacies of atorvastatin and NSAIDs, sulindac and naproxen, administered individually and in combination against colon tumorigenesis. We evaluated the chemopreventive potential of a low-dose atorvastatin in combination with NSAIDs with colonic tumor formation as the endpoint and further determined the action of atorvastatin and in combination with NSAIDs in regulating the expression of key protein markers and signaling pathways during colon carcinogenesis.

Materials and Methods

Compounds

Atorvastatin, sulindac, and naproxen (Fig. 1) were provided by the DCP Repository at the National Cancer Institute. Conversion products from [3H]-l-arginine to [3H]-l-citrulline were obtained from New England Nuclear Corporation.

Animals, diet, and in vivo experimental procedures

Weanling male F344 rats obtained from Charles River Breeding Laboratories were randomly distributed by weight into control and experimental groups. Animals had access to food and water at all times. Food cups were replenished with fresh diet twice weekly. Experimental diets were purchased from Research Diets and stored at 4°C. Beginning at 5 weeks of age, all rats were fed the modified American Institute of Nutrition-76A (AIN-76A) diet. At 7 weeks of age, the animals were given subcutaneous injections of azoxymethane (CAS no. 25843-45-2; Ash Stevens) at a dose rate of 15 mg/kg body weight or saline as solvent control once weekly for 2 weeks. One week after the second azoxymethane treatment, groups of rats were fed AIN-76A diet containing atorvastatin (200 ppm), sulindac (100 ppm), naproxen (150 ppm), or their combinations with low-dose atorvastatin (100 ppm) for 45 weeks. At autopsy, animals were sacrificed by CO2 asphyxiation, and the colon was removed, rinsed in PBS, opened longitudinally, and flattened on a filter paper. The location and size of each tumor was noted. Mucosal scrapings were collected and stored at −80°C for further analysis. Tumors were removed, fixed in 10% buffered formalin for 24 hours, and transferred to 70% ethanol for histopathologic analysis.

Histopathology and immunohistochemistry

The tumor tissues were dehydrated, embedded in paraffin, and cut into 4 μm thick sections. For histopathology, the sections were hydrated and stained with hematoxylin and eosin according to the standard protocol. The stained sections were analyzed for tumor grades by a pathologist. For immunohistochemical analysis, only noninvasive adenocarcinomas were selected for the evaluation of protein markers. The detailed procedures for immunohistochemical analysis are reported previously (40). The primary antibodies against proliferating cell nuclear antigen (PCNA; 1:1,500 diluted) from BD Pharmingen; cyclin D1 (1:500 diluted), β-catenin (1:500 diluted), phospho-p65 (1:250 diluted), and iNOS (1:500 diluted) all from Santa Cruz Biotechnology; and COX-2 (1:200 diluted) from Cayman Chemical were treated on the sections. The images were taken randomly at 400× using Zeiss AxioCam HRc camera fitted to a Zeiss Axioscope 2 Plus microscope. For β-catenin quantification, Image Pro 6.2 Plus (Media Cybernetics, Inc.) was used to obtain the IOD (integrated optical density = average intensity/density of each object) values.

Measurement of iNOS activity

iNOS activities were determined in colon tissue samples of rats exposed to various experimental diets. Conversion of [3H]-l-arginine to [3H]-l-citrulline was measured by a modification described previously (7). iNOS activity is expressed as nanomoles of [3H]-l-citrulline per milligram of protein per minute.

Measurement of cytokine production by ELISA

Colonic mucosa samples were homogenized in a PBS-based buffer solution (PBS, 0.4 mol/L NaCl, 10 mmol/L...
EDTA, 0.1 mmol/L phenylmethylsulfonylfluoride, 0.1 mol/L benzethonium ion, 0.5% bovine serum albumin, 3.0% aprotinin, and 0.05% Tween 20) on ice using a Tekmar Tissuemiser (Fisher Scientific International, Inc.). The homogenized solution was centrifuged at 10,000 rpm at 4°C for 10 minutes. The supernatant was collected for determination of protein concentration and stored at −20°C. For determination of the levels of interleukin (IL)-1β, IL-4, and TNF-α, tissue homogenates were normalized down to a concentration of 1.0 mg/mL of total protein and then diluted 10-fold in diluent buffer for analysis, following the manufacturer’s protocols. Invitrogen Immunoassay kits (BioSource International Inc.) were used to determine the levels of IL-1β (catalogue no. KRC0042), IL-4 (catalogue no. KRC0042), and TNF-α (catalogue no. KRC3012).

Statistical analysis
Statistical significance was analyzed using Student’s t test or ANOVA test followed by Tukey’s multiple comparison test. Tumor incidence was analyzed by 2-tailed Fisher’s exact probability test.

Results

General observations
Body weights of animals fed the experimental diets containing atorvastatin, sulindac, or naproxen individually or in combination were comparable with those fed the control diet throughout the study, indicating that the dose of atorvastatin, sulindac, or naproxen used did not cause any overt toxicity. The maximum tolerated dose (MTD) for each agent was previously determined (sulindac ~400 ppm, naproxen ~700 ppm, and atorvastatin >600 ppm).

Therefore, the doses were determined on the basis of the information with these agents in AIN-76A diet on the F344 rats (16,20,24,25). In the present study, we used the lower MTD doses of sulindac (~25% MTD), naproxen (~20% MTD), and atorvastatin (~30% and 15%), respectively. Importantly, administration of these dose levels would produce plasma area under the curve (AUC) levels in rats that would somewhat equal the plasma AUC levels of humans given low to mid doses of these agents.

A low-dose atorvastatin with sulindac or naproxen reduces tumor incidence and tumor multiplicity in azoxymethane-injected rats

The effects of administration of a low-dose atorvastatin with sulindac or naproxen on azoxymethane-induced colon tumorigenesis were evaluated, and the results are summarized in Table 1. None of the rats in the saline groups (without azoxymethane injection, n = 6 per group) developed tumors when autopsied at week 45 (data not shown). Most of azoxymethane-treated control diet fed rats developed adenocarcinomas at 45 weeks. Histopathologic analysis by hematoxylin and eosin staining revealed more than 90% of the tumors from the control group as adenocarcinomas and the remaining less than 10% were carcinoma in situ. Approximately 95% of the total adenocarcinomas belonged to the noninvasive adenocarcinoma.

Table 1. Chemopreventive effects of atorvastatin, sulindac, naproxen alone, or combination of low-dose atorvastatin with either sulindac or naproxen on azoxymethane-induced colon adenocarcinoma incidence and multiplicity in male F344 rats

<table>
<thead>
<tr>
<th>Experimental groupa</th>
<th>Number of rats at autopsy</th>
<th>% of rats with adenocarcinomasb</th>
<th>% inhibition</th>
<th>Adenocarcinomas/rat, c mean ± SE</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOM-control (AIN-76A diet)</td>
<td>31</td>
<td>23/31 (74.2%)</td>
<td></td>
<td>1.77 ± 0.31</td>
<td></td>
</tr>
<tr>
<td>AOM-sulindac (100 ppm)</td>
<td>33</td>
<td>19/33 (57.6%)</td>
<td>22.4%</td>
<td>1.15 ± 0.26</td>
<td>35.0%</td>
</tr>
<tr>
<td>AOM-naproxen (150 ppm)</td>
<td>30</td>
<td>17/30 (56.7%)</td>
<td>23.6%</td>
<td>1.23 ± 0.25</td>
<td>30.5%</td>
</tr>
<tr>
<td>AOM-atorvastatin (200 ppm)</td>
<td>31</td>
<td>11/31 (35.5%; P = 0.005)</td>
<td>52.2%</td>
<td>0.74 ± 0.19 (P = 0.008)</td>
<td>58.2%</td>
</tr>
<tr>
<td>AOM-atorvastatin (100 ppm) + sulindac (100 ppm)</td>
<td>32</td>
<td>10/32 (31.3%; P = 0.005)</td>
<td>57.8%</td>
<td>0.31 ± 0.09 (P1 < 0.0001; P2 = 0.005)</td>
<td>82.5%</td>
</tr>
<tr>
<td>AOM-atorvastatin (100 ppm) + naproxen (150 ppm)</td>
<td>33</td>
<td>9/33 (27.3%; P = 0.0004)</td>
<td>63.2%</td>
<td>0.27 ± 0.08 (P1 < 0.0001; P2 = 0.004)</td>
<td>84.8%</td>
</tr>
</tbody>
</table>

Abbreviations: AOM, azoxymethane; SE, standard error.

aTest agents were administered in the diet following the second AOM or saline treatment and continuously thereafter for the duration of the experiment which is 45 weeks from the start of AOM or saline treatment.

bTumor incidence was analyzed by 2-tailed Fisher’s exact probability test.

cStatistical significance was analyzed using Student’s t test. P1 is the value for the comparison of rats treated with chemopreventive agents with control rats; P2 is the value for the comparison of rats treated with combination of low-dose atorvastatin (100 ppm) with rats treated with either sulindac or naproxen alone.
Table 2. Atorvastatin, in combination with sulindac or naproxen, decreases mucosal and colonic tumor levels of the proinflammatory cytokines, TNF-α, IL-1β, and IL-4

<table>
<thead>
<tr>
<th>Experimental groupa</th>
<th>TNF-α, pg/mg</th>
<th>IL-1β, pg/mg</th>
<th>IL-4, pg/mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOM-control (AIN-76A) diet</td>
<td>1,182.9 ± 114.9</td>
<td>2,194.7 ± 209.4</td>
<td>321.0 ± 35.6</td>
</tr>
<tr>
<td>AOM-sulindac (100 ppm)</td>
<td>751.4 ± 64.7 (P = 0.004)</td>
<td>1,610.0 ± 173.0 (P = 0.04)</td>
<td>212.4 ± 26.4 (P = 0.02)</td>
</tr>
<tr>
<td>AOM-naproxen (150 ppm)</td>
<td>910.7 ± 85.5</td>
<td>1,917.9 ± 316.6</td>
<td>292.5 ± 51.1</td>
</tr>
<tr>
<td>AOM-atorvastatin (200 ppm)</td>
<td>812.8 ± 117.7 (P = 0.03)</td>
<td>1,431.3 ± 195.1 (P = 0.01)</td>
<td>186.2 ± 30.8 (P = 0.01)</td>
</tr>
<tr>
<td>AOM-atorvastatin (100 ppm) + sulindac (100 ppm)</td>
<td>747.7 ± 109.2 (P = 0.03)</td>
<td>1,410.9 ± 200.7 (P = 0.01)</td>
<td>193.9 ± 39.2 (P = 0.03)</td>
</tr>
<tr>
<td>AOM-atorvastatin (100 ppm) + naproxen (150 ppm)</td>
<td>759.7 ± 205.0 (P = 0.01)</td>
<td>1,499.9 ± 226.7 (P = 0.03)</td>
<td>191.7 ± 29.8 (P = 0.01)</td>
</tr>
</tbody>
</table>

aThe mucosa samples were homogenized and assayed by ELISA for the different cytokines, as described under Materials and Methods. Colon mucosa samples were randomly selected from each group and cytokine levels were analyzed (n = 12). The mean ± SD values are shown.

grade whereas the remaining 5% was invasive adenocarcinoma (Table 1). Administration of sulindac and naproxen individually had modest inhibitory (~25% incidence and ~33% multiplicity) effect on colon adenocarcinomas. However, atorvastatin (200 ppm) significantly suppressed both colon tumor incidence (52% reduction, P = 0.005) and multiplicity (58% reduction, P = 0.008). Most importantly, total colon tumor incidence was significantly decreased when rats were given low-dose atorvastatin with either sulindac (58% reduction, P = 0.001) or naproxen (63% reduction, P = 0.005), respectively (Table 1). Colon tumor multiplicities were also profoundly reduced when rats were given low-dose atorvastatin with either sulindac or naproxen (80%–85%, P < 0.0001; Table 2).

A low-dose atorvastatin, in combination with sulindac or naproxen, decreases cell proliferation markers, PCNA, β-catenin, and cyclin D1 in the colon adenocarcinomas

As shown in Figure 2A (first row), the histologic evaluation revealed that the majority of tumors were noninvasive adenocarcinomas. The expression of PCNA, a marker for cell proliferation, was determined in the adenocarcinomas from the control and treatment groups. The colon tumors from a low-dose atorvastatin, in combination with sulindac or naproxen, fed group showed significant reduction of PCNA nuclear staining compared with the control group (Fig. 2A, second row). Aberrant expression of β-catenin can be considered as a key event during colorectal tumorigenesis and is linked to the increased transcription of a number of genes such as cyclin D1 (32, 33). β-Catenin was identified along the membrane of the epithelial cells in the control group. Compared with the control, all treatment groups showed marked inhibition of β-catenin membrane staining: sulindac (35.6% inhibition), naproxen (41.6% inhibition), atorvastatin (41.7% inhibition), atorvastatin + sulindac (59.4% inhibition), and atorvastatin + naproxen (54.6% inhibition; Fig. 2A, third row). The colonic crypt cells in the control group showed homogeneous and intense staining for β-catenin in the cytosol as well as in the membrane, with lower and scattered staining in the nucleus. In contrast, the tumors from the treatment groups had no observable nuclear staining. Furthermore, the cytoplasmic expression of β-catenin was also markedly inhibited by the treatment with atorvastatin alone and in combination with sulindac or naproxen (Fig. 2A, third row). Because cyclin D1 is a downstream signaling target of β-catenin, and overexpression of cyclin D1 is reported in patients with colorectal tumors where its lowering has therapeutic significance (32, 33), we determined whether treatment reduces cyclin D1 levels in colon tumors. Positive brownish staining of cyclin D1 in the control group predominantly localized in both the cytoplasm and nucleus. Administration of a low dose of atorvastatin, in combination with sulindac or naproxen, markedly reduced the staining for cyclin D1 in both the cytoplasm and the nucleus (Fig. 2A, fourth row).

A low-dose atorvastatin, in combination with sulindac or naproxen, reduces the expression of inflammatory enzymes, iNOS, and COX-2 and decreases nuclear staining of phospho-p65 in colon adenocarcinomas

Overexpression of inflammatory markers is a hallmark of colorectal tumors (41, 42). This knowledge led us to examine the effects of long-term feeding of treatment with atorvastatin and NSAIDs on the inflammatory markers in the azoxymethane-injected rats. There was significant inhibition of the expression of iNOS and COX-2 proteins within the crypts in the adenocarcinomas from the treatment groups, compared with those from the control group (Fig. 2B). We also determined the effects of each treatment on a key nuclear factor kappaB (NF-kB) signaling molecule, p65, because NF-kB is an upstream factor of both iNOS and COX-2 transcription, and it is critical in the tumorigenesis where ablation of the proteins in this pathway caused the regression of tumors in animal models (43). The activated form of NF-kB subunit p65, that is, phospho-p65, is markedly reduced in the nucleus of the colon tumors from the treatment groups, when compared with those from the
control group (Fig. 2B). In addition, significant inhibition of the iNOS enzyme activity was shown in tumors from naproxen, atorvastatin, and combination treatment groups. Importantly, combinational treatment of atorvastatin with sulindac or naproxen showed maximal inhibition on iNOS enzyme activity compared with single agents (Fig. 3). In summary, colon adenocarcinomas from atorvastatin and NSAIDs fed animals showed reduced expression of key inflammatory markers as well as nuclear staining for phospho-p65, a key molecule in the NF-κB pathway.

A low-dose atorvastatin, in combination with sulindac or naproxen, inhibits colonic mucosal levels of cytokines TNF-α, IL-1β, and IL-4

Inflammatory cytokines are found to be present in human cancers including those of the colorectum, breast, prostate, and bladder (44, 45). The action of cytokines to facilitate carcinogenesis is multifold: DNA damage by reactive oxygen species and reactive nitrogen species; inhibition of DNA repair by reactive oxygen species; functional inactivation of tumor suppressor genes; tissue remodeling via activation of matrix metalloproteinases; and stimulation of angiogenesis and control of cell adhesion molecules (45). ELISA conducted for inflammatory cytokines on mucosal scrapings derived from the azoxymethane-injected rats are shown in Table 2. Sulindac treatment alone strongly inhibited the production of cytokines, TNF-α by 36.2% ($P = 0.004$), IL-1β by 26.6% ($P = 0.04$), and IL-4 by 34.0% ($P = 0.03$). More importantly, administration of a low-dose atorvastatin, in combination with sulindac or naproxen, significantly lowered the levels of cytokines in the colon; TNF-α by 36.8% ($P = 0.03$) and 33.3% ($P = 0.01$); IL-1β by 35.7% ($P = 0.01$) and 31.7% ($P = 0.03$); IL-4 by 39.9% ($P = 0.03$) and 40.4% ($P = 0.01$), respectively.

Discussion

This is the first report on the combination treatment using low-dose atorvastatin with either low-dose sulindac or naproxen, which greatly suppress the colon adenocarcinoma incidence and multiplicity. Our results suggest that decreased inflammatory cytokines and signaling...
molecules, particularly inhibition of nuclear p65, β-catenin, and cyclin D1, are responsible for suppression of colonic adenocarcinomas. The present study is an extension of our previous work, which identified atorvastatin, sulindac, and naproxen as effective agents in suppressing colon cancer in animals (7, 16, 24). The results from the current research conducted in colon cancer reveal that administration of a low dose of atorvastatin, in combination with sulindac or naproxen, reduces the colon tumor multiplicity and regulates intermediate signaling pathways of proliferation and inflammation in the colon (Fig. 4).

A comparison of tumor numbers across the different grades of tumor shows an overall reduction by the treatment with a low dose of atorvastatin, in combination with sulindac or naproxen. Importantly, statistical analysis on tumor data revealed a profound inhibitory effect of low-dose atorvastatin with either sulindac or naproxen on adenocarcinomas. Unlike the APC(C мин)+/− mice, in which most of tumors are localized to the small intestine and those are predominantly adenomas, in the azoxymethane-induced rat, intestinal tumors are mostly localized to distal colon and adenocarcinomas, similar to human etiology. Thus, the results of our present study provide potential significance for human clinical trials. Also, it is important to note that in our previous studies, we have shown that 150 ppm atorvastatin inhibits colon adenocarcinoma incidence and multiplicity (~34% inhibition, P ≤ 0.05) whereas, in this study, use of 200 ppm of atorvastatin suppressed more than 52% incidence (P = 0.005) and more than 58% multiplicity (P < 0.008) of colon adenocarcinomas. These results suggest that a modest dose increase in atorvastatin (from 150 ppm to 200 ppm) significantly enhances the chemopreventive efficacy.

Azoxymethane-induced tumors result from mutations in the Wnt/β-catenin pathway (28) as does the APC(C мин)+/− model. However, unlike the APC(C мин)+/− model, azoxymethane-induced tumors are caused by mutations in the β-catenin gene (29, 30). These mutations result in β-catenin stabilization and aberrant expression of β-catenin, which is considered as a key event during colon tumorigenesis (31). Immunohistochemical analysis revealed abundance of β-catenin mostly in the cytoplasm and relatively low nuclear staining in the adenocarcinomas of rats injected with azoxymethane whereas administration of a low dose of atorvastatin, in combination with sulindac or naproxen, significantly reduces the nuclear β-catenin staining in the adenocarcinomas of rats injected with azoxymethane.
markedly reduced the staining for β-catenin in both the cytoplasm and the nucleus (Fig. 2A).

Cyclin D1 is a very well-known cell-cycle protein targeted by β-catenin (35) and is known to be overexpressed in colonic tumors (32, 34). c-MYC is yet another important protein for cell proliferation regulated by β-catenin and Wnt pathway (38). These observations on cyclin D1 were corroborated by the potency of a low dose of atorvastatin, in combination with sulindac or naproxen, to affect the β-catenin levels in the colon tumors. In our studies, we identified a low dose of atorvastatin, in combination with sulindac or naproxen, to significantly lower the levels of cyclin D1 in the colon tumors induced with azoxymethane (Fig. 2A). More importantly, nuclear levels of β-catenin and cyclin D1 are reported to play more important role in tumorigenesis than the total protein levels (46, 47). In our studies, a low dose of atorvastatin, in combination with sulindac or naproxen, reduced the levels of cyclin D1 and β-catenin in the nucleus (Fig. 2A).

In addition to the effects on β-catenin and cell proliferation, our results indicate the anti-inflammatory property of a low dose of atorvastatin, in combination with sulindac or naproxen. We observed marked reduction in the staining intensities for iNOS, COX-2, and phospho-p65 markers as well as for the iNOS enzyme activity in colon tumors from the combination treatment groups (Figs. 2B and 3). Mucosal levels of inflammatory cytokines, such as TNF-α, IL-1β and IL-4, were also significantly downregulated by a low dose of atorvastatin, in combination with sulindac or naproxen (Table 2). Several anti-inflammatory agents that target the nitric oxide or the prostaglandin pathway are reported to present chemopreventive action in the colon (4, 7, 48). A clinical trial on celecoxib, the selective COX-2 inhibitor, at a dose of 400 mg daily reduced advanced adenoma formation in the colon by almost 50% compared with the placebo through a 3-year treatment period (49). In addition to anti-inflammatory and antiproliferative mechanisms, azoxymethane treatment may also generate oxidative stress and significant genotoxicity by inducing methyl–DNA adducts; however, these processes may significantly subside within 12 to 18 hours after the azoxymethane treatment. In this study, we administered chemopreventive agents 1 week after the carcinogen treatment and thus possibility of carcinogenic action of azoxymethane via inhibition of oxidative stress or DNA adducts is very minimal to none by the chemopreventive agents. Promising results with other agents, such as the use of low concentrations of difluoromethylornithine and sulindac as chemopreventive agents in colorectal cancer, highlight the potential role of inflammation in its pathogenesis and the importance of combination strategies (48).

In conclusion, a low dose of atorvastatin, in combination with sulindac or naproxen, inhibits profoundly colon tumorigenesis by regulating the p65/β-catenin/cyclin D1 signaling pathway and the inflammatory responses. Overall, the data indicate that a low dose of atorvastatin, in combination with sulindac or naproxen, holds great promise in the field of colon cancer chemoprevention in humans.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors thank Maria Hyra and Lamberto R. Navoa of the Animal Facility in the Department of Chemical Biology for their technical assistance in taking care of the animals.

Grant Support

This work was supported by NCI-N01-CN-53300, R01-CA94962, and the Trustees Research Fellowship Program at Rutgers, The State University of New Jersey.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 27, 2011; revised June 2, 2011; accepted June 28, 2011; published OnlineFirst July 15, 2011.

References

Combination of Atorvastatin with Sulindac or Naproxen Profoundly Inhibits Colonic Adenocarcinomas by Suppressing the p65/β-Catenin/Cyclin D1 Signaling Pathway in Rats

Updated version
Access the most recent version of this article at:
doi:10.1158/1940-6207.CAPR-11-0222

Cited articles
This article cites 49 articles, 18 of which you can access for free at:
http://cancerpreventionresearch.aacrjournals.org/content/4/11/1895.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.