Changes in Breast Density and Circulating Estrogens in Postmenopausal Women Receiving Adjuvant Anastrozole

Dietary Energy Balance Modulates Prostate Cancer Progression in Hi-MyC Mice
Jorge Blando, Tricia Moore, Stephen Hursting, Guiyu Jiang, Achinto Saha, Linda Beltran, Jianjun Shen, John Repass, Sara Strom, and John DiGiovanni

Chemoprevention of Colon and Small Intestinal Tumorigenesis in APCMin/+ Mice by Licofelone, a Novel Dual 5-LOX/COX Inhibitor: Potential Implications for Human Colon Cancer Prevention
Altaf Mohammed, Naveena B. Janakiram, Qian Li, Chang-In Choi, Yuting Zhang, Vernon E. Steele, and Chinthalapally V. Rao

Nonsteroidal Anti-inflammatory Drugs and Glioma in the NIH-AARP Diet and Health Study Cohort
Sarah E. Daugherty, Steven C. Moore, Ruth M. Pfeiffer, Peter D. Inskip, Yikyung Park, Albert Hollenbeck, and Preetha Rajaraman

Alcohol Intake and Colorectal Cancer Risk by Molecularly Defined Subtypes in a Prospective Study of Older Women
2044 The Impact of Common Genetic Variations in Genes of the Sex Hormone Metabolic Pathways on Steroid Hormone Levels and Prostate Cancer Aggressiveness
Tong Sun, William K. Oh, Susanna Jacobus, Meredith Regan, Mark Pomerantz, Matthew L. Freedman, Gwo-Shu Mary Lee, and Philip W. Kantoff

2051 The Histone Demethylase JMJD2B Plays an Essential Role in Human Carcinogenesis through Positive Regulation of Cyclin-Dependent Kinase 6

2062 Phase II Prospective Randomized Trial of a Low-Fat Diet with Fish Oil Supplementation in Men Undergoing Radical Prostatectomy

2072 Variants Downstream of the Ornithine Decarboxylase Gene Influence Risk of Colorectal Adenoma and Aspirin Chemoprevention
Elizabeth L. Barry, Leila A. Mott, Robert S. Sandler, Dennis J. Ahnen, and John A. Baron

2083 Cryptotanshinone Inhibits Lymphatic Endothelial Cell Tube Formation by Suppressing VEGFR-3/ERK and Small GTPase Pathways
Yan Luo, Wenxing Chen, Hongyu Zhou, Lei Liu, Tao Shen, J. Steven Alexander, Shizhong Zheng, Yin Lu, and Shile Huang

2092 Possible Role of Visfatin in Hepatoma Progression and the Effects of Branched-Chain Amino Acids on Visfatin-Induced Proliferation in Human Hepatoma Cells
Soranobu Ninomiya, Masahito Shimizu, Kenji Imai, Koji Takai, Makoto Shiraki, Takeshi Hara, Hisashi Tsurumi, Sonoko Ishizaki, and Hisataka Moriwaki

2101 Unfolded Protein Response Signaling and MAP Kinase Pathways Underlie Pathogenesis of Arsenic-Induced Cutaneous Inflammation
Changzhao Li, Jianmin Xu, Fugui Li, Sandeep C. Chaudhary, Zhiping Weng, Jianming Wen, Craig A. Elments, Habibul Ahsan, and Mohammad Athar

2110 Egg, Red Meat, and Poultry Intake and Risk of Lethal Prostate Cancer in the Prostate-Specific Antigen-Era: Incidence and Survival
Erin L. Richman, Stacey A. Kenfield, Meir J. Stampfer, Edward L. Giovannucci, and June M. Chan

2122 Bitter Melon Extract Impairs Prostate Cancer Cell-Cycle Progression and Delays Prostatic Intraepithelial Neoplasia in TRAMP Model
Peng Ru, Robert Steele, Pratibha V. Nerurkar, Nancy Phillips, and Ratna B. Ray

2131 Acknowledgment to Reviewers
ABOUT THE COVER

The cover image is a photomicrograph (200X magnification) of mouse skin stained with antibody to activating transcription factor 6 alpha (ATF6α; red). Nuclei were counterstained with 4′,6-diamidino-2-phenylindole (DAPI; blue). The color images were taken separately using an Olympus BX 51 Fluorescent microscope and then merged. When unfolded protein response (UPR) is activated, ATF6α translocates from endoplasmic reticulum (ER) membrane to the Golgi apparatus, where it undergoes cleavage by site-1 protease (S1P) and S2P. Cleaved ATF6α migrates to the nucleus (violet, reflecting its overlay with DAPI blue staining) and induces transcription of UPR target genes. New work reported in this issue of the journal found that sub-chronic arsenic exposure activated reactive oxygen species (ROS)-dependent UPR signaling pathways (including the ATF6α pathway), which enhanced inflammation in murine skin. UPR signaling is under intensive investigation in inflammatory diseases and cancers. See article by Li et al. (beginning on page 2101) for more information.