Contents

PERSPECTIVE

173 | A Strong Case for Personalized, Targeted Cancer Prevention
 | Marcia I. Dawson
 | *Perspective on Lee, et al., p. 185*

MINIREVIEW

177 | Heme Iron from Meat and Risk of Colorectal Cancer: A Meta-analysis and a Review of the Mechanisms Involved
 | Nadia M. Bastide, Fabrice H.F. Pierre, and Denis E. Corpet

RESEARCH ARTICLES

185 | Global Assessment of Genetic Variation Influencing Response to Retinoid Chemoprevention in Head and Neck Cancer Patients
 | J. Jack Lee, Xifeng Wu, Michelle A.T. Hildebrandt, Hushan Yang, Fadlo R. Khuri, Edward Kim, Jian Gu, Yuanqing Ye, Reuben Lotan, Margaret R. Spitz, and Waun Ki Hong

194 | The Prostaglandin Transporter Regulates Adipogenesis and Aromatase Transcription
 | Kotha Subbaramaiah, Clifford A. Hudis, and Andrew J. Dannenberg

207 | Characterization of the Methylation Patterns in Human Papillomavirus Type 16 Viral DNA in Head and Neck Cancers
 | Il-Seok Park, Xiaofei Chang, Myriam Loyo, Gao Song Wu, Alice Chiang, Myoung Soo Kim, Young Kwang Chae, Sofia Lyford-Pike, William H. Westra, John R. Saunders, David Sidransky, and Sara Isabel Pai

218 | Gene Expression Profiling Predicts the Development of Oral Cancer
 | Pierre Saintigny, Li Zhang, You-Hong Fan, Adel K. El-Naggar, Vassiliki A. Papadimitrakopoulou, Lei Feng, J. Jack Lee, Edward S. Kim, Waun Ki Hong, and Li Mao

230 | Inhibition of EGFR-STAT3 Signaling with Erlotinib Prevents Carcinogenesis in a Chemically-Induced Mouse Model of Oral Squamous Cell Carcinoma

238 | Proanthocyanidins Inhibit UV-Induced Immunosuppression Through IL-12-Dependent Stimulation of CD8+ Effector T Cells and Inactivation of CD4+ T Cells
 | Mudit Vaid, Tripti Singh, Anna Li, Nandan Katiyar, Samriti Sharma, Craig A. ElMets, Hui Xu, and Santosh K. Katiyar

248 | Melanoma Chemoprevention in Skin Reconstructs and Mouse Xenografts Using Isoselenocyanate-4
 | Natalie Nguyen, Arati Sharma, Nhung Nguyen, Arun K. Sharma, Dhimant Desai, Sung Jin Huh, Shantu Amin, Craig Meyers, and Gavin P. Robertson

259 | Randomized Phase II Trial of Sulindac, Atorvastatin, and Prebiotic Dietary Fiber for Colorectal Cancer Chemoprevention

267 | Aerosolized Bexarotene Inhibits Lung Tumorigenesis without Increasing Plasma Triglyceride and Cholesterol Levels in Mice
 | Qi Zhang, Jing Pan, Jingjie Zhang, Pengyuan Liu, Ruth Chen, Da-ren Chen, Ronald Lubet, Yan Wang, and Ming You

277 | Cost Utility of Prostate Cancer Chemoprevention with Dutasteride in Men with an Elevated Prostate Specific Antigen
 | Robert S. Svatек and Yair Lotan
ABOUT THE COVER

The cover features a photomicrograph (200X magnification) of a frozen cross-section of laboratory-generated human skin containing a melanocytic lesion created from a cell line obtained from a patient having an early-stage melanoma. This model represents organotypic skin, to which topical agents can be applied for cancer prevention studies that recapitulate results of agents applied to animal skin. The organotypic skin contains layers and boundaries (an epidermis and dermis) similar to those in human skin. Furthermore, green fluorescence protein (GFP)-tagged WM35 cells form an early melanocytic lesion in this model that is similar in structure to that seen in humans with disease at the same stage of development. The GFP-tag in the cells enables measurement via fluorescence microscopy of the effects of topically applied chemopreventive agents. The photomicrograph shows the GFP-tagged melanocytic lesion cells (green) and DAPI-stained nuclei (blue) of these cells, as well as nuclei of keratinocytes and fibroblasts present in the organotypic skin, six days after creation. As reported in this issue of the journal, the chemopreventive efficacy of topically applied ISC-4 was evaluated in this model and compared with its effects in animals with invasive subcutaneous human melanoma xenografts. Cumulatively applied ISC-4 reduced melanocytic or melanoma lesions in the organotypic skin model by 80%-90% and similarly decreased tumor development in animals by ~80%. See article by Nguyen et al. (beginning on page 248) for more information.