Contents

Letter from the Editor 1

MINIREVIEWS

3 Nuclear Receptors as Modulators of the Tumor Microenvironment
 Mara H. Sherman, Michael Downes, and Ronald M. Evans

11 Cervical Cancer Prevention in Low- and Middle-Income Countries: Feasible, Affordable, Essential
 Vikrant V. Sahasrabuddhe, Groesbeck P. Parham, Mulindi H. Mwanahamuntu, and Sten H. Vermund

COMMENTARIES

18 Reducing HPV-Associated Cancer Globally
 Douglas R. Lowy and John T. Schiller
 Commentary on Fitzgerald et al., p. 34

24 Preventing Cancer with Vaccines: Progress in the Global Control of Cancer
 Mark A. Kane
 Commentary on Fitzgerald et al., p. 34

PERSPECTIVE

30 Strawberry Fields Forever?
 Nanjoo Suh and John M. Pezzuto
 Perspective on Chen et al., p. 41

RESEARCH ARTICLES

34 The Effect of HIV and HPV Coinfection on Cervical COX-2 Expression and Systemic Prostaglandin E2 Levels
 Daniel W. Fitzgerald, Karl Bezak, Oksana Ocheretina, Cynthia Riviere, Thomas C. Wright, Ginger L. Milne, Xi Cathy Zhou, Baoheng Du, Kotha Subbaramaiah, Erin Byrt, Matthew L. Goodwin, Arash Rafii, and Andrew J. Dannenberg
 See Commentaries on p. 18 and p. 24

41 Randomized Phase II Trial of Lyophilized Strawberries in Patients with Dysplastic Precancerous Lesions of the Esophagus
 Tong Chen, Fei Yan, Jiaming Qian, Mingzhou Guo, Hongbing Zhang, Xiaofei Tang, Fang Chen, Gary D. Stoner, and Xiaomin Wang
 See Perspective on p. 30

51 Stem Cell Antigen-1 Deficiency Enhances the Chemopreventive Effect of Peroxisome Proliferator–Activated Receptor Activation
 Hongyan Yuan, Geeta Upadhyay, Yuzhi Yin, Lev Novopokrovich, and Robert I. Glazer

61 The Influence of UGT1A6 Variants and Aspirin Use in a Randomized Trial of Celecoxib for Prevention of Colorectal Adenoma
 Andrew T. Chan, Meier Hsu, Ann G. Zauber, Ernest T. Hawk, and Monica M. Bertagnolli

73 Hops (Humulus lupulus) Inhibits Oxidative Estrogen Metabolism and Estrogen-Induced Malignant Transformation in Human Mammary Epithelial cells (MCF-10A)
 L.P. Madhubhani, P. Hemachandra, R. Esala, P. Chandrasena, Shao-Nong Chen, Matthew Main, David C. Lankin, Robert A. Scism, Birgit M. Dietz, Guido F. Pauli, Gregory R.J. Thatcher, and Judy L. Bolton

82 Antiestrogen Therapy for Breast Cancer Modifies the Risk of Subsequent Cutaneous Melanoma
 Caroline Huber, Christine Bouchardy, Robin Schaffar, Isabelle Neyroud-Caspar, Georges Vlastos, Frédérique-Anne Le Gal, Elisabetta Rapiti, and Simone Benhamou

89 CDDO-Methyl Ester Delays Breast Cancer Development in Brca1-Mutated Mice
 Eun-Hee Kim, Chuxia Deng, Michael B. Sporn, Darlene B. Royce, Renee Risingsong, Charlotte R. Williams, and Karen T. Liby
Inflammatory Marker Changes in a Yearlong Randomized Exercise Intervention Trial among Postmenopausal Women
Christine M. Friedenreich, Heather K. Neilson, Christy G. Woolcott, Qinggang Wang, Frank Z. Stanczyk, Anne McTiernan, Charlotte A. Jones, Melinda L. Irwin, Yutaka Yasui, and Kerry S. Courneya

Momordica Charantia Lectin, a Type II Ribosome Inactivating Protein, Exhibits Antitumor Activity toward Human Nasopharyngeal Carcinoma Cells In Vitro and In Vivo
Evandro Fei Fang, Chris Zhi Yi Zhang, Tzi Bun Ng, Jack Ho Wong, Wen Liang Pan, Xiu Juan Ye, Yau Sang Chan, and Wing Ping Fong

Silencing hsp25/hsp27 Gene Expression Augments Proteasome Activity and Increases CD8+ T-Cell–Mediated Tumor Killing and Memory Responses
Ganachari M. Nagaraja, Punit Kaur, William Neumann, Edwina E. Asea, Maria A. Bausero, Gabriele Mullhoff, and Alexzander Asea

Opportunities for the Primary Prevention of Colorectal Cancer in the United States
Corinne E. Joshu, Giovanni Parmigiani, Graham A. Colditz, and Elizabeth A. Platz

ABOUT THE COVER
The expression of heat shock protein 25 (Hsp25) or Hsp27 in mouse and human breast cancer cells is effectively downregulated by Hsp25 short hairpin RNA (Hsp25shRNA) or Hsp27 small interfering RNA (Hsp27siRNA), respectively. The cover features phase-contrast (at left) and fluorescent (at right) micropictograms (40X magnification) of control 4T1 cells (a highly metastatic breast cancer cell line) expressing control shRNA (top images) or 4T1 cells modified to express Hsp25shRNA (bottom images). As demonstrated by the phase-contrast images (left), cell morphology is unaffected by the permanent transduction of a vector which contains control shRNA (which does not have any sequence homology with the mouse genome) or Hsp25shRNA (which has sequence homology with the mouse Hsp25 gene); the green fluorescent protein (GFP)-tagged fluorescent images (right) demonstrate a high expression (green) of control shRNA and Hsp25shRNA even after six weeks in culture. Western blot analysis (not shown) indicates that Hsp25 expression is reduced in the Hsp25shRNA-expressing cells (bottom) versus control shRNA-expressing cells (top). See article by Nagaraja et al. (beginning on page 122) for more information.