Colorectal cancer is one of the most common cancers in the world with the incidence rising particularly in developed countries (1). Colorectal carcinogenesis results from progressive accumulation of genetic and epigenetic alterations and causes deregulation of different signaling pathways governing cellular metabolism, proliferation, differentiation, and survival (2). Up to 90% of colorectal cancer cases are related to lifestyle and eating behavior particularly excessive consumption of calorie-rich food and low physical activity, which results in a significant overweight and obesity, which are major health problems. Significant epidemiologic evidence indicates that obesity increases the risk of development of different cancers such as colon and rectum, endometrium, esophagus, kidney, pancreas, breast (postmenopausal), gallbladder, and hematologic malignancies (4). Moreover, obesity is a poor prognostic factor for some neoplastic tumors (4, 5). Cohort studies show that risk of developing of colon cancer increases by 15% in overweight people, and obesity increases this risk by up to 33% compared with the risk of people with a normal BMI (4).

The obese phenotype is characterized by increase of volume of white adipose tissue (WAT), which is a major source of energy storage in the form of triglycerides. WAT not only serves as an energy depot but is also the largest endocrine organ in the body, which secretes hormones, adipokines, proinflammatory cytokines, and growth factors (6).

A number of obesity-related carcinogenic pathways uncover a positive relation between increased body size and colorectal malignancy. Obesity influences carcinogenesis through the production of multiple circulating signaling molecules such as hormones and growth factors (adipokines, insulin, and insulin growth factor 1) and inflammatory cytokines (TNF-α, interleukin (IL)-6, IL-1β, monocyte chemoattractive protein, and C-reactive protein). These signaling molecules promote tumor cell growth and support the inflammatory state by acting locally on the neighboring tissues and systemically via serum circulation. Obesity-produced factors activate multiple intracellular signaling pathways including PI3K-AKT-mTOR (7), JAK2-STAT3-MAPK, EGFR-Notch1-Survivin, 5′-adenosine monophosphate-activated protein kinase (AMPK; ref. 8), PPARγ-FGF1 (9), and TGF-β/SMAD3 signaling (6). Cytokine production in obese adipose tissue creates a chronic inflammatory microenvironment that favors tumor cell motility, invasion, and epithelial–mesenchymal transition to enhance the metastatic potential of tumor cells (10). Despite the growing evidence for cross-talk between these pathways, it remains difficult to investigate the insights into mechanistic links between adipose tissue and cancer.

The work by Huffman and colleagues reported in this issue provides a critical evaluation of the contribution of adipose tissue apart from caloric restriction in the deregulation of energy homeostasis in the colon and colon tumor growth (11). Huffman and colleagues have a long-standing interest in dissecting the obesity-linked pathways. In 2007, using a transgenic mouse model of prostate cancer (transgenic...
adenocarcinoma mouse prostate), they reported that changes in energy balance, body mass, and/or body composition rather than food intake per se conferred cancer risk (12). Earlier studies by the same group established a direct relationship between insulin resistance, type 2 diabetes, and lifespan using a surgical model of visceral fat removal in rats (13–15). The current study offers an important addition to our understanding of the obesity-associated colorectal cancer risks as it establishes the important role of visceral fat in obesity-associated intestinal tumorigenesis (11). Epidemiologic evidence points to visceral adipose tissue as a major contributor to the development of metabolic diseases such as type 2 diabetes, cardiovascular disease, dyslipidemia, inflammation, and hypertension (16). A strong association exists between abdominal or visceral fat tissue and risk of colorectal and pancreatic cancers independent of BMI (17). Huffman and colleagues used a surgical approach to eliminate visceral fat. The experimental animals were assigned to 3 groups: sham operated, visceral fat removal (VR-), and sham operated and caloric restricted. This approach allowed evaluating the independent contribution of visceral fat and caloric restriction to the intestinal tumor formation and survival in animals genetically predisposed to colon carcinogenesis (Apc\(^{1638N/\alpha}\) mouse model).

Several novel findings came out of this work. First, visceral fat removal was an effective mode of suppressing experimental intestinal carcinogenesis, and it improved the animal survival rates similarly to caloric restriction. The beneficial effect of caloric restriction was in line with the previously reported experimental data that a calorie-rich diet augments colorectal carcinogenesis, whereas caloric restriction reduces colorectal tumor incidence (18, 19). The suppression of carcinogenesis induced by caloric restriction was likely associated with the morphologic and biochemical changes in adipocytes. Specifically, caloric restriction reduced the adipocyte size, decreased triglyceride and proinflammatory cytokines production but stimulated adiponectin secretion, and AMPK activation (8, 20).

Second, the gender-specific differences in anti-tumorigenic efficacy of visceral fat removal and caloric restriction were observed, specifically in relation to the size of the formed adenomas (microadenomas \(< 0.5 \text{ mm diameter}\) versus macroadenomas, \(\geq 0.5 \text{ mm diameter}\)). Although in the current study, caloric restriction was a very effective mode of suppressing colon carcinogenesis and improving survival rates of mice of both sexes, gender-specific analysis showed that caloric restriction was effective in suppressing both micro- and macroadenoma formation in males but had no effect on tumorigenesis in females.

In contrast, visceral fat removal suppressed the macroadenoma formation in females but not in males. The authors explained this difference by the shift in regrown fat distribution among VR- males, particularly, because of an increase in mesenteric fat after removal of the epididymal and perinephric fat deposits, which was not observed in VR- females.

At the same time, visceral fat removal in females unexpectedly increased the number of microadenomas. This interesting observation was explained by the blockage of progression of tumor development due to “a systemic change in factor(s).” Indeed, the visceral fat removal may disrupt normal adipocyte maturation. Although the state of adipocyte differentiation was not evaluated by Huffman and colleagues, they found that serum leptin levels were significantly higher and adiponectin levels were lower in visceral fat removed females. Adiponectin is a known antiangiogenic and antiproliferative adipokine (21). It promotes the differentiation of adipocytes and is normally elevated in mature adipose tissue. Mature adipocytes produce both leptin and adiponectin, but preadipocytes secrete high levels of leptin (22). It has been shown that \textit{in vitro}, leptin produced by both mature adipocytes and preadipocytes was able to enhance the proliferation of colon cancer cells (23). Females produce more leptin than males, which is related to gender differences in fat depots and to leptin-suppressive effects of testosterone. Furthermore, visceral fat removed females retained the elevated level of insulin and the proinflammatory chemokine CXCL-1. This chemokine and possibly others secreted by preadipocytes attract monocytes, and high leptin levels promote monocyte conversion to macrophages, which contribute to local production of proinflammatory cytokines and proangiogenic factors, as has been reported in breast cancer (24). Such a microenvironment in adipose tissue may favor microadenoma initiation.

Still, important questions remain. What are the factors that can block the progression of tumor development at the microadenoma-macroadenoma transition? What factors contribute to the different outcome after visceral fat removal in male and female mice? What are the genetic interactions for the sex-related increase of microadenoma formation?

Huffman and colleagues did not address the potential Wnt signaling effects on adipogenesis and specifically, visceral fat growth factor signaling. Figure 1 depicts these signaling relationships and those influenced by caloric restriction and identifies key responses in male and female mice. The Apc\(^{1638N/\alpha}\) mouse used in the Huffman and colleagues study produces the adenomatous polyposis coli (APC) protein truncated in position 1,638, leading to the increase in \(\beta\)-catenin stability and overexpression of Wnt target genes. It has been shown \textit{in vitro} that Wnt-10b signaling protein stabilizes free \(\beta\)-catenin and blocks adipogenesis in 3T3-L1 mouse preadipocytes (25). It is tempting to assume that in Apc\(^{1638N/\alpha}\) mice, the adipose tissue is not fully differentiated because of the aberrant Wnt signaling. Thus, there is a great possibility that PPAR\(\gamma\) plays a significant role in the observed findings. PPAR\(\gamma\) has been shown to be necessary and sufficient for adipocytes differentiation (26). PPAR\(\gamma\) function is also required for the maintenance of the mature adipocytes, as expression of a dominant-negative PPAR\(\gamma\) in differentiated mouse 3T3-L1 adipocytes results in dedifferentiation of adipocytes with loss of lipid accumulation and decreased expression of adipocyte markers (27). \textit{In vivo}, knockout of PPAR\(\gamma\) in mature adipocytes via adipocyte-specific \(aP2\)-driven expression of Cre-recombinase results in lipodystrophy
accompanied by susceptibility to high-fat-induced steatosis, hyperinsulinemia, and insulin resistance (28). In fully formed adipocytes, PPARγ activation is important for both lipid and glucose metabolism. Specifically, the control of glucose homeostasis and insulin sensitivity by PPARγ occurs upon its activation by the insulin-sensitizing synthetic ligands for PPARγ, thiazolidinediones, that have been used to treat insulin resistance associated with type 2 diabetes (29). Ligand-dependent PPARγ activation regulates a number of genes involved in lipid uptake and storage in adipose tissue and fatty acid utilization such as lipoprotein lipase, which catalyzes hydrolysis of triglycerides (30). This latter reference provides support for the relationships depicted in Fig. 1 for the role of adipogenesis, visceral fat, and carcinogenesis. In that paper, hyperlipidemia was observed in ApcMin/+ mice, which express a truncated APC protein, and PPARγ agonists suppressed both the hyperlipidemia and intestinal carcinogenesis in treated animals. Others have described the PPARγ-mediated regulation of fibroblast growth factor 1 (FGF1), which is required for adaptive adipose remodeling and metabolic homeostasis (9). All the mentioned PPARγ-mediated effects in adipocytes may be critical for colon carcinogenesis.

In conclusion, the exciting work by Huffman and colleagues provides important data about the contribution of visceral adipose tissue to intestinal carcinogenesis in the Apc1638N/+ mouse model. Given the significant role of the APC tumor suppressor gene in human colon carcinogenesis, it is likely that these results have relevance to colon carcinogenesis in humans. These new data address complex relationships between multiple signals associated with the obese state (summarized in Fig. 1) and gender. Results from this study do not support a current hypothesis relating to excess production of estrogen by fat tissue, as serum estradiol levels were not different in control animals and mice in which visceral fat had been surgically removed. The study findings do distinguish the role of visceral fat from confounding factors such as caloric restriction. It will be important to validate these findings in human studies as they may provide new opportunities for the prevention of colorectal cancer in patients with sporadic or genetic risk factors for colon cancer. The authors correctly point out that future clinical trials can exploit both pharmaceutical and behavioral strategies to address abdominal adiposity as a cancer risk factor in humans.

Disclosure of Potential Conflicts of Interest

E.W. Gerner is employed with Cancer Prevention Pharmaceuticals as Chief Scientific Officer and has ownership interest (including patents) with Cancer Prevention Pharmaceuticals. No potential conflicts of interest were disclosed by the other author.

Authors’ Contributions

Conception and design: N.A. Ignatenko, E.W. Gerner
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): E.W. Gerner
Writing, review, and/or revision of the manuscript: N.A. Ignatenko, E.W. Gerner

Grant Support

The authors’ work is supported by grants from the National Cancer Institute (CA157595—N.A. Ignatenko Principal Investigator and CA095060, CA123065—E.W. Gerner Principal Investigator).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received January 24, 2013; accepted January 25, 2013; published online March 6, 2013.
References

# Get the Fat Out!

Natalia A. Ignatenko and Eugene W. Gerner


<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: <a href="http://cancerpreventionresearch.aacrjournals.org/content/6/3/161">http://cancerpreventionresearch.aacrjournals.org/content/6/3/161</a></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Access the most recent supplemental material at: <a href="http://cancerpreventionresearch.aacrjournals.org/content/suppl/2013/03/04/6.3.161.DC1">http://cancerpreventionresearch.aacrjournals.org/content/suppl/2013/03/04/6.3.161.DC1</a></td>
</tr>
</tbody>
</table>

| Cited articles | This article cites 29 articles, 13 of which you can access for free at: http://cancerpreventionresearch.aacrjournals.org/content/6/3/161.full.html#ref-list-1 |

| E-mail alerts | Sign up to receive free email-alerts related to this article or journal. |
| Reprints and Subscriptions | To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org. |
| Permissions | To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org. |