128 Folate Deficiency Induces Dysfunctional Long and Short Telomeres; Both States Are Associated with Hypomethylation and DNA Damage in Human WIL2-NS Cells
Caroline F. Bull, Graham Mayrhofer, Nathan J. O’Callaghan, Amy Y. Au, Hilda A. Pickett, Grace Kah Mun Low, Dimphy Zeegers, M. Prakash Hande, and Michael F. Fenech

139 Licochalcone A, a Natural Inhibitor of c-Jun N-Terminal Kinase 1
Ke Yao, Hanyong Chen, Mee-Hyun Lee, Hahtao Li, Weiya Ma, Cong Peng, Nu Ry Song, Ki Won Lee, Ann M. Bode, Ziming Dong, and Zigang Dong

150 A Novel Molecular Pathway for Snail-Dependent, SPARC-Mediated Invasion in Non–Small Cell Lung Cancer Pathogenesis
Jeanette L. Grant, Michael C. Fishbein, Long-Sheng Hong, Kostyantyn Krysan, John D. Minna, Jerry W. Shay, Tonya C. Walser, and Steven M. Dubinett

161 Cognitive Factors Associated with Adherence to Oral Antiestrogen Therapy: Results from the Cognition in the Study of Tamoxifen and Raloxifene (Co-STAR) Study
Heidi D. Klepin, Ann M. Geiger, Hanna Bandos, Joseph P. Costantino, Stephen R. Rapp, Kaycee M. Sink, Julia A. Lawrence, Hal H. Atkinson, and Mark A. Espeland

169 eRapa Restores a Normal Life Span in a FAP Mouse Model
Paul Hasty, Carolina B. Livi, Sherry G. Dodds, Diane Jones, Randy Strong, Martin Javors, Kathleen E. Fischer, Lauren Sloane, Kruthi Munthy, Gene Hubbard, Lishi Sun, Vincent Hurez, Tyler J. Curiel, and Zelton Dave Sharp

ABOUT THE COVER
In 2007, the International Agency for Cancer Research presented compelling evidence that linked smokeless tobacco use to the development of human oral cancer. While these findings imply vigorous local carcinogen metabolism, little is known regarding levels and distribution of Phase I, II, and drug egress enzymes in human oral mucosa. The current study integrated clinical data, imaging studies, and histopathologic analyses of an oral squamous cell carcinoma that arose at the site of smokeless tobacco quid placement. The cover depicts a three-dimensional iCAT image of the buccal aspect of the patient’s left mandibular body. The marked bone destruction associated with tobacco quid placement in the buccal vestibule adjacent to the patient’s second and first mandibular molars is readily apparent. Immunoblot and immunohistochemical (IHC) analyses were employed to identify tumor and normal human oral mucosal smokeless tobacco-associated metabolic bioactivation and detoxification enzymes. Human oral epithelium contains every known Phase I enzyme capable of nitrosamine oxidative bioactivation with ~2 fold interdonor differences in protein levels. IHC studies confirmed that oral mucosal nitrosamine metabolizing enzymes reside in the basilar and suprabasilar regions, sites of ongoing keratinocyte DNA replication. Clearly, variations in product composition, capacity for nitrosamine oxidative metabolism and exposure duration will modulate clinical outcomes. The data presented here form a coherent picture consistent with the abundant experimental data that link tobacco-specific nitrosamines to human oral cancer. See article by Mallery and colleagues (beginning on page 23) for more information.