Dietary \(\gamma \)-Tocopherol-Rich Mixture Inhibits Estrogen-Induced Mammary Tumorigenesis by Modulating Estrogen Metabolism, Antioxidant Response, and PPAR\(\gamma \)

Soumyasri Das Gupta1, Sudathip Sae-tan1, Joseph Wahler1, Jae Young So1, Min Ji Bak1, Larry C. Cheng1, Mao-Jung Lee1, Yong Lin2,3, Weichung Joe Shih2,3, James D. Shull4, Stephen Safe5, Chung S. Yang1,3, and Nanjoo Suh1,3

Abstract

This study evaluated the anticancer activity and mechanism of action of \(\gamma \)-tocopherol–rich tocopherol mixture, \(\gamma \)-TmT, in two different animal models of estrogen-induced breast cancer. The chemopreventive effect of \(\gamma \)-TmT at early (6 weeks), intermediate (18 weeks), and late (31 weeks) stages of mammary tumorigenesis was determined using the August–Copenhagen Iri- rat model. Female rats receiving 17\(\beta \)-estradiol (E2) implants were administered with different doses \((0\%\), 0.05\%, 0.1\%, 0.3\%, and 0.5\%) of \(\gamma \)-TmT. Treatment with 0.3\% and 0.5\% \(\gamma \)-TmT decreased tumor volume and multiplicity. At 31 weeks, serum concentrations of E2 were significantly decreased by \(\gamma \)-TmT. \(\gamma \)-TmT preferentially induced expression of the E2-metabolizing enzyme CYP1A1, over CYP1B1 in the rat mammary tissues. Nrf2-dependent antioxidant response was stimulated by \(\gamma \)-TmT, as evident from enhanced expression of its downstream targets, NQO1, GCLM, and HMOX1. Serum concentrations of the oxidative stress marker, 8-isoprostane, were also decreased in the \(\gamma \)-TmT–treated groups. Treatment with \(\gamma \)-TmT increased expression of PPAR\(\gamma \) and its downstream genes, PTEN and p27, whereas the cell proliferation marker, PCNA, was significantly reduced in \(\gamma \)-TmT–treated mammary tumors. In an orthotopic model in which human MCF-7 breast cancer cells were injected into the mammary fat pad of immunodeficient mice, \(\gamma \)-TmT inhibited E2-dependent tumor growth at all the doses tested. In conclusion, \(\gamma \)-TmT reduced mammary tumor development, in part through decreased E2 availability and reduced oxidative stress in mammary tissues; \(\gamma \)-TmT could thus be an effective agent for the prevention and treatment of E2-induced breast cancer. Cancer Prev Res; 8(9); 807–16. ©2015 AACR.

Introduction

Breast cancer is one of the most common malignancies in women worldwide and the second leading cause of cancer death among women in the United States (1). Prolonged exposure to estrogens has been associated with an increased risk of breast cancer (2–4). However, the precise mechanisms by which estrogens exert their carcinogenic effects are not well understood. It has been suggested that estrogens induce mammary tumor formation via two distinct mechanisms; namely, estrogen-receptor (ER)–dependent and ER-independent pathways (2–6). The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER (2, 4). The ER-independent mechanism depends on metabolism of endogenous estrogens by cytochrome P450 (CYP) enzymes to generate highly reactive electrophilic quinones and ROS. Several phase II detoxification or clearance of quinones and ROS. Several phase II detoxification enzymes regulated by the transcription factor nuclear factor (erythroid derived 2)-like 2 (Nrf2) have been suggested to be protective against oxidative stress induced by estrogens (13, 14). Thus, diets rich in antioxidants could be effective for the prevention of estrogen-induced breast cancer.

Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain). Vitamin E is a family of fat soluble phenolic compounds consisting of a chromanol ring and a side chain (15). They occur in eight different forms, four tocophersols (with a saturated phytol tail) and four tocotrienols (with an unsaturated isoprenoid side chain).
chain) designated as α, β, γ, and δ, respectively (15). It has been suggested that tocopherols can reduce the risk of cancer due to their strong antioxidant properties (16, 17). Several studies show that a lower vitamin E nutritional status is associated with an increased risk of certain cancers (17, 18). In contrast, some large-scale clinical trials with α-tocopherol (α-T) have failed to demonstrate its cancer preventive activity (19, 20). Such conflicting outcomes raise questions about the anticancer potential of α-T and emphasize the need to investigate the biologic activity of other forms of tocopherols in cancer prevention.

γ-T is the most abundant tocopherol in the U.S. diet, found in vegetable oils, such as soybean, corn, and cottonseed (21). It is a byproduct of refined vegetable oil, a naturally occurring tocopherol mixture rich in γ-T (22). γ-TmT has been recently shown to inhibit colon, lung, and breast carcinogenesis in animal models (22–24). We have previously reported that γ-TmT suppresses N-methyl-N-nitrosourea (NMU)-induced mammary tumor growth in Sprague Dawley rats (24, 25). Because estrogen-mediated animal models of breast cancer are probably more physiologically relevant to human breast cancer, August-Copenhagen Irish (ACI) rats, which exhibit 80% to 100% tumor incidence after chronic estrogen exposure (26), were utilized in the current study to determine the anticancer effects of γ-TmT and further investigate the role of tocopherols in estrogen-mediated events. In earlier studies, we demonstrated that γ-TmT inhibits oxidative/nitrosative stress and reduces cell proliferation in estrogen-induced mammary hyperplasia (27, 28). However, the protective effects of γ-TmT during mammary tumorigenesis have not been evaluated.

In the present study, we determined the efficacy of dietary γ-TmT on estrogen-induced mammary tumors in two different in vivo models. In the first study, ACI rats supplemented with estrogen in silastic tubing were utilized to assess the chemopreventive effect of γ-TmT at early (6 weeks), intermediate (18 weeks), and late (31 weeks) stages of mammary tumorigenesis. The mechanism of action of γ-TmT was investigated with respect to regulation of estrogen-metabolizing enzymes, antioxidant response, nuclear receptor signaling, and cell proliferation. In a second study using an orthotopic model, immunodeficient mice supplemented with estrogen pellets were xenografted with MCF-7 cells and fed with γ-TmT. We demonstrate that γ-TmT inhibits estrogen-induced mammary tumor growth in both ACI rats and MCF-7 xenografts.

Materials and Methods

Diets

Natural γ-TmT was obtained from BASF Corporation (Covi-ox T-90, Batch number 0008778732). It contained 56.1% γ-T, 22.3% δ-T, 11.5% α-T, and 1.2% β-T. Semipurified diet AIN-93M obtained from Research Diets, Inc. was used as the control diet. Experimental diets were prepared by adding required percentages of γ-TmT to the AIN-93M diet. The diets were stored at 4°C in sealed containers, and food cups were replenished with fresh pellets twice a week.

Animals and experimental procedures

Female ACI rats were purchased from Harlan Laboratories at 6 to 7 weeks of age. After 2 weeks of acclimatization, the rats were subcutaneously implanted with silastic tubing filled with 9 mg of 17β-estradiol (E2) (Sigma-Aldrich) or sham implants, following a previously described method (29). Rats receiving sham implants were fed with control diet. E2-implanted rats were fed with control diet or diets containing different concentrations of γ-TmT: 0.05%, 0.1%, 0.3%, and 0.5%. Diets were administered from the day of E2 implantation. Rats were sacrificed at three time points—6 weeks, 18 weeks, and 31 weeks. For 6 and 18 weeks, each treatment group consisted of 6 rats, whereas for 31 weeks, 30 rats were included per group. Body weight of the animals was measured weekly. Rats were palpated for mammary tumors weekly, starting from 18 weeks after E2 implantation. Blood was collected at autopsy and serum stored at −80°C. Mammary glands, tumors, and liver were frozen or fixed in 10% formalin for further analysis. For MCF-7 xenograft tumor studies, female nu/nu mice were purchased from Charles River Laboratories. After 2 weeks of acclimatization, the mice were implanted subcutaneously with 0.72 mg E2 pellets (Innovative Research of America).

Analysis of tocopherols in the serum and mammary glands of rats

The levels of tocopherols (α, δ, γ) and their metabolites in rat serum were analyzed by high-performance liquid chromatography using previously described methods (22, 30).

Serum estradiol levels

E2 levels in the serum were analyzed using an ELISA kit from Calbiotech, Inc. The assay was performed according to the manufacturer’s protocol. The assay was based on the principle of competitive binding between E2 in the test specimen and E2–enzyme conjugate for a constant amount of antiestradiol polyclonal antibody. The standard curve was obtained from samples of E2 in the range of 3 to 300 pg/mL provided with the kit.

mRNA expression analysis using quantitative polymerase chain reaction

RNA was extracted from frozen mammary glands, tumors, and liver. Reverse transcription and qPCR were performed as previously described (31). Labeled primers were used for cytochrome P450 1A1 (CYP1A1), cytochrome P450 1B1 (CYP1B1), nuclear factor (erythroid derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase quinone 1 (NQO1), glutamate cytochrome ligase, modifier subunit (GCLM), heme oxygenase 1 (HMOX1), ERα, ERβ, PPARy, PTEN, p27, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Western blot analysis

Mammary tumors were homogenized and the protein extracts analyzed by Western blot as previously described (24). Primary antibodies against CYP1A1 (sc-25304), CYP1B1 (sc-32882), Nrf2 (sc-722), NQO1 (sc-3793), and GCLM (sc-55585) were purchased from Santa Cruz Biotechnology; HMOX1 (ab68477) was purchased from Abcam. One tumor sample from three different animals in each treatment group was pooled for analysis.

Downloaded from cancerpreventionresearch.aacrjournals.org on October 18, 2017. © 2015 American Association for Cancer Research.
Immunohistochemical analysis
Mammary tumors were fixed in 10% formalin, embedded in paraffin, and sectioned at 4 μm thickness. Sections were incubated overnight at 4°C with antibody to proliferating cell nuclear antigen (PCNA; 1:8,000; M 0879; Dako), followed by incubation with biotinylated secondary antibody and avidin/biotin peroxidase complex. The sections were then stained with 3′-diaminobenzidine substrate and counterstained with Modified Harris Hematoxylin. Tumor sections from three different animals per treatment group were stained. Representative images (×40 magnification) were taken randomly, and staining density was quantified using an Aperio ScanScope by counting at least 15,000 cells per slide.

Enzyme immunoassay for 8-isoprostane
EIA kit from Cayman Chemicals was used to determine 8-isoprostane levels. For the extraction of 8-isoprostane, serum samples were mixed with ethyl acetate, vortexed for 30 minutes, and centrifuged at 10,000 × g for 20 minutes. The organic layer was collected and dried using a speed vacuum evaporator. The dried samples were reconstituted in EIA buffer, and the assay was performed following the manufacturer’s protocol.

Statistical analysis
Tumor-free survival (TFS), or time to appearance of the first tumor, was estimated by the Kaplan–Meier method. The log-rank test was used to assess the homogeneity of TFS between different treatment groups. Tumor multiplicity was analyzed using the log-linear model (Poisson regression). Statistical significance was evaluated using one-way ANOVA model followed by Dunnett’s multiple comparison posttest, preserving the overall type-1 error at the 5% level. The data are represented as ±SE. Differences were considered statistically significant when *P < 0.05.

Results
Dietary γ-TmT inhibits estrogen-induced mammary tumorigenesis in ACI rats
Female ACI rats implanted with E2 were fed with control or diets supplemented with different concentrations of γ-TmT. TFS for each treatment group was estimated (Fig. 1A). The median time to the appearance of first tumor in the E2 control group was 26.5 weeks. In the 0.05%, 0.1%, 0.3%, and 0.5% γ-TmT treatment groups, the median TFS time was 25, 28, 27, and 29 weeks, respectively. At the end of the 31-week study, there was no overall difference in TFS time between the E2 control and any of the γ-TmT–treated groups (Fig. 1A). Tumor volume was measured at autopsy (Fig. 1B). Although the treatment with two lower doses of γ-TmT (0.05% and 0.1%) had no effect on the size of E2-induced mammary tumors, 0.3% and 0.5% γ-TmT reduced tumor volume by 52% (*P < 0.01) and 42% (**P < 0.01), respectively. Tumor multiplicity was also reduced in the 0.3% and 0.5% γ-TmT groups (Fig. 1C). In the E2 control, average tumor multiplicity was 4.4 ± 0.1 per rat, whereas treatment with 0.3% and 0.5% γ-TmT decreased tumor multiplicity to an average of 2.7 ± 0.3 (*P < 0.01) and 3.0 ± 0.2 (**P < 0.05) tumors per rat, respectively. Average body weights of rats at 31 weeks were not affected by E2 or different doses of γ-TmT treatment, indicating that none of the treatments were toxic for the given duration (Fig. 1D).

Administration of dietary γ-TmT increases the serum levels of tocopherols and their metabolites in ACI rats
To determine the serum levels of tocopherols in ACI rats fed with different doses of γ-TmT for 6, 18, and 31 weeks, serum
samples collected at autopsy were analyzed for γ, δ, α, and their respective short chain metabolites, carboxyethyl hydroxychromans (CEHC) and carboxymethylbutyl hydroxychromans (CMBHC, Table 1). At 18- and 31-week time points, a dose-dependent increase in the serum levels of γ- and δ-T was observed in response to γ-TmT administration. The concentration of γ- and δ-T and in the 0.5% γ-TmT–treated rat serum was also time-dependent, increasing progressively with 6, 18, and 31 weeks of γ-TmT supplementation. At 31 weeks, the rats fed with 0.3% and 0.5% γ-TmT exhibited a 66- and 134-fold increase in δ-T, whereas γ-T levels increased by 27- and 46-, respectively. Serum levels of α-T were increased in the 0.3% and 0.5% γ-TmT groups at 18 and 31 weeks. However, the fold increase in α-T was modest because γ-TmT has a lower content of α-T compared with δ- and γ-T. γ-TmT supplementation also increased the serum levels of γ, δ, α-CEHC, and CMBHC metabolites in the serum of ACI rats within individual time points. At all three time points, γ- and δ-CEHC and CMBHC metabolites increased dose-dependently in response to γ-TmT administration, and the levels of these metabolites were higher at 18 and 31 weeks compared with 6 weeks. Overall, the CEHC metabolites were more abundant than the CMBHC metabolites in the serum.

γ-TmT decreases serum estradiol levels and induces the estrogen-metabolizing enzyme CYP1A1 in ACI rat tissues

Our data showed that 0.3% and 0.5% were the doses of γ-TmT capable of inhibiting estrogen-induced mammary tumorigenesis in ACI rats. Hence, all subsequent molecular analyses were performed on these two treatment groups and controls. Circulating levels of E2 in the negative control (no E2 supplementation), E2 control, and γ-TmT–treated ACI rats were measured at 6, 18, and 31 weeks (Fig. 2A). At 6 weeks, the average serum E2 level of the negative control group was 39.3 ± 2.5 pg/mL, which was increased to 54.7 ± 4.4 pg/mL with E2 treatment. At 18 weeks, serum E2 level of the negative control group was 32.2 ± 1.9 pg/mL, whereas for the E2 control was 48.4 ± 2.4 pg/mL (P < 0.01). At the 31-week time point, serum E2 increased from 33 ± 1.9 pg/mL in the negative control to 82.4 ± 5.5 pg/mL in the E2 control group (P < 0.001). This corresponds to a 1.3- , 1.5-, and 2.4-fold increase of serum E2 levels in the E2 control group at 6, 18, and 31 weeks, respectively, compared with the negative control. At 6 and 18 weeks, γ-TmT treatment had no effect on the serum E2 levels. However, at 31 weeks, 0.3% and 0.5% γ-TmT lowered the average levels of serum E2 to 56 ± 5.7 pg/mL (32%, P < 0.01) and 48 ± 5.1 pg/mL (41%, P < 0.001), respectively.

To elucidate how γ-TmT decreases serum E2 levels in ACI rats, expression of the genes for two major estrogen-metabolizing enzymes, CYP1A1 and CYP1B1, in rat tissues was analyzed by qPCR (Fig. 2B). For 6 and 18 weeks, analysis was done on rat mammary glands, whereas for the 31-week time point, mammary tumors and liver tissues were analyzed. At all three time points, γ-TmT induced expression of CYP1A1 mRNA compared with the E2 control. Treatment with 0.3% and 0.5% γ-TmT induced CYP1A1 mRNA by 3.3 ± 0.7 (P < 0.05) and 9.9 ± 0.5 (P < 0.001) fold, respectively, at 6 weeks and 1.5 ± 0.1 (P < 0.05) and 2.0 ± 0.1 (P < 0.01) fold, respectively, at 18 weeks. Induction of CYP1A1 mRNA expression was highest in mammary tumors at 31 weeks, showing an increase of 112.5 ± 46.7 (P < 0.05) fold with 0.3% γ-TmT, and 41.9 ± 23.6 fold with 0.5% γ-TmT. γ-TmT did not alter the levels of CYP1B1 mRNA in mammary tissues at 6, 18, or 31 weeks. As the liver is a major site of estrogen metabolism,

Table 1

<table>
<thead>
<tr>
<th>Time (weeks)</th>
<th>Treatment</th>
<th>γ-TmT (mg/L)</th>
<th>δ-T (mg/L)</th>
<th>α-CEHC (mg/L)</th>
<th>γ-CEHC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Negative control</td>
<td>0.2 0.0 16.6</td>
<td>0.0 0.1 2.7</td>
<td>0.3 0.2 11.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2 control</td>
<td>0.3 0.0 0.1</td>
<td>0.0 0.1 0.3</td>
<td>0.0 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2 + 0.05% γ-TmT</td>
<td>1.6 0.8 5.1</td>
<td>0.1 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2 + 0.1% γ-TmT</td>
<td>3.7 2.1 7.4</td>
<td>0.0 0.1 0.0</td>
<td>0.0 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Negative control</td>
<td>0.1 0.0 0.8</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2 control</td>
<td>0.3 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2 + 0.05% γ-TmT</td>
<td>2.8 1.3 2.0</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2 + 0.1% γ-TmT</td>
<td>5.1 1.0 3.3</td>
<td>0.0 0.0 0.0</td>
<td>0.0 0.0 0.0</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The effect of γ, δ, α-CEHC, and γ-CEHC in respective time points. Statistical significance: *P < 0.01 and **P < 0.001.
CYP1A1 and CYP1B1 mRNA levels were analyzed in the rat livers for the 31-week time point. Treatment with γ-TmT significantly induced expression of CYP1A1 mRNA but had no effect on the levels of CYP1B1 mRNA in rat livers. γ-TmT also increased protein expression of CYP1A1 in the mammary tumors, whereas CYP1B1 levels remained fairly constant (Fig. 2C).

γ-TmT induces Nrf2-dependent antioxidant response and decreases the oxidative stress marker 8-isoprostane in ACI rats

Oxidative metabolism of estrogen generates genotoxic metabolites, free radicals, and ROS (3). Nrf2-dependent phase II and antioxidant enzymes detoxify estrogen metabolites and act as scavengers for free radicals and ROS (13, 14). In the present study, γ-TmT was found to induce the estrogen-metabolizing enzyme, CYP1A1. To investigate if γ-TmT detoxifies E2 metabolites and reduces oxidative stress through induction of Nrf2-dependent antioxidant response, gene expression of Nrf2 and some of its downstream enzymes in rat mammary tissues were analyzed by qPCR (Fig. 3A). No significant change in the mRNA levels of Nrf2 was observed with γ-TmT treatment at 6, 18, and 31 weeks. However, at 6 and 31 weeks, γ-TmT induced mRNA expression of the phase II detoxification enzyme NQO1, and the antioxidant enzymes, GCLM and HMOX1. Western blot analysis of mammary tumors showed increased protein levels of Nrf2, NQO1, GCLM, and HMOX1 with γ-TmT supplementation (Fig. 3B). The oxidative stress marker, 8-isoprostane, was quantified in rat serum by ELISA (Fig. 3C). Treatment with E2 significantly increased the concentrations of 8-isoprostane in the serum of ACI rats at each experimental time point. γ-TmT decreased 8-isoprostane levels from as early as 6 weeks. Treatment with 0.3% and 0.5% γ-TmT reduced serum 8-isoprostane levels by 59% (P < 0.001) and 63% (P < 0.001) at 6 weeks, 78% (P < 0.001) and 76% (P < 0.001) at 18 weeks, 77% (P < 0.001) and 76% (P < 0.001) at 31 weeks, respectively.

γ-TmT induces ERβ and PPARγ nuclear receptor signaling and reduces cell proliferation in mammary tumors of ACI rats

To further investigate how γ-TmT inhibits mammary tumorigenesis in ACI rats, expression of the genes for nuclear receptors, ERβ and PPARγ, were analyzed by qPCR in rat mammary tissues (Fig. 4A). ERβ is known to inhibit proliferation and invasion of breast cancer cells (32). Although γ-TmT did not affect ERβ expression in the mammary glands at 6 and 18 weeks, mRNA expression of ERβ was significantly induced in mammary tumors by γ-TmT at 31 weeks. No change in ERα was observed at any of the three time points (data not shown). PPARγ is a ligand-
activated transcription factor, belonging to the family of nuclear receptors, and activation of PPARγ has been reported to inhibit mammary carcinogenesis (33, 34). γ-TmT induced PPARγ mRNA in the tumors of ACI rats (Fig. 4A). mRNA expression of the tumor suppressor, PTEN, which is a downstream target of PPARγ and the cell cycle regulator, p27, were also upregulated in the tumors by γ-TmT. Immunohistochemical analysis also showed that γ-TmT reduced the cell proliferation marker PCNA in the mammary tumors of ACI rats (Fig. 4B). Administration of 0.3% and 0.5% γ-TmT reduced PCNA levels by 63% (P < 0.05) and 55% (P < 0.05), respectively.

Dietary γ-TmT inhibits estrogen-mediated mammary tumor growth in MCF-7 xenografts

The ACI rat study demonstrated that γ-TmT could be useful for the prevention of E2-mediated mammary cancer. To investigate if γ-TmT could also be a potential agent for the inhibition of E2-dependent mammary cancer, the effect of dietary γ-TmT was studied in a second animal model, namely, an orthotopic mouse model using MCF-7 cells. The ER-positive breast cancer cell line, MCF-7, was injected into mammary fat pads of nu/nu mice implanted with estrogen pellets. Mice were fed different dietary doses of γ-TmT, and the effects of γ-TmT on tumor growth were assessed. Administration of dietary γ-TmT for 9 weeks at doses of 0.05%, 0.1%, 0.3%, and 0.5% reduced mammary tumor volume by 74% (P < 0.05), 54% (P < 0.05), 82% (P < 0.01), and 71% (P < 0.05), respectively (Fig. 5A). Tumor weights were also decreased by 79% (P < 0.05), 64% (P < 0.05), 87% (P < 0.01), and 78% (P < 0.01) with 0.05%, 0.1%, 0.3%, and 0.5% γ-TmT, respectively (Fig. 5B). The 0.05% to 0.5% dietary doses of γ-TmT were all effective as inhibitors of mammary tumor growth in these xenografted mice, showing a greater level of responsiveness than we observed in the ACI rat model.

Discussion

The association between estrogen exposure and increased breast cancer risk has been known for decades (11, 35). ER-positive breast cancer accounts for two third of all initially diagnosed breast cancers (36). In this study, the effects of four doses of γ-TmT (0.05%, 0.1%, 0.3%, and 0.5%) on estrogen-induced mammary cancer formation and growth were assessed using two different animal models of breast cancer. The cancer...
preventive effects of γ-TmT at early, intermediate, and late stages of mammary tumorigenesis were studied using ACI rats, which are an established model of E2-induced rodent mammary carcinogenesis. Previously, 6 and 18 weeks have been reported as important time points to study early and intermediate events of mammary tumorigenesis in ACI rats (37). Prolonged exposure of ACI rats to high doses of E2 (27 mg) induces pituitary tumors, which can interfere with breast cancer prevention studies (38). To avoid this problem, a low dose of E2 (9 mg) in silastic tubing was used in the present study to induce mammary tumors. We investigated the chemopreventive activity of the naturally occurring tocopherol mixture, γ-TmT, which contains 56% γ-T. In a published study with type 2 diabetic human subjects (39), 500 mg mixed tocopherols/day (mixed tocopherols containing 60% γ-T) resulted in serum γ-T levels (approximately 9 μmol/L) similar to that observed with 0.3% γ-TmT administration in rats (8.2 μmol/L) in our study (Table 1). Although treatment with lower doses of γ-TmT (0.05% and 0.1%) had no inhibitory effect on mammary tumor growth, 0.3% and 0.5% γ-TmT reduced tumor burden and multiplicity in the ACI rats. Treatment with 0.3% γ-TmT was more effective than 0.5% γ-TmT in inhibiting E2-induced mammary tumors, suggesting that γ-TmT may have a biphasic effect at higher concentrations.

Elevated serum E2 concentrations are associated with a higher risk of breast cancer in women (40). At 31 weeks, γ-TmT decreased the circulating levels of E2 in ACI rats which could contribute to its inhibitory effect on mammary tumorigenesis. To determine the mechanism of E2 decrease, we examined expression of CYP1A1 and CYP1B1, the major phase I enzymes expressed in breast and liver tissues (41). CYP1A1 and CYP1B1 metabolize E2 to the catechol E2 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2), respectively (3). 2-OHE2 lacks tumorigenic activity and is considered to be the “good metabolite” of estrogen (41). It is rapidly converted to the nontoxic 2-methoxyestradiol by catechol-O-methyltransferase (COMT; ref. 41). On the other hand, 4-OHE2 is highly genotoxic and possesses carcinogenic potential due to its ability to form depurinating DNA adducts (4). γ-TmT induced gene expression of CYP1A1 without altering the expression of CYP1B1 at all three stages of mammary tumorigenesis (Fig. 2). At 31 weeks, the dramatic induction of CYP1A1 by γ-TmT in mammary tumors could lead to increased E2 metabolism, contributing to reduction in levels of serum E2. Induction of CYP1A1 and CYP1B1 is typically observed after exposure to aryl hydrocarbon receptor (AhR) ligands, and the differential induction of CYP1A1 compared with CYP1B1, as observed in this
study, has been previously reported with AhR active pharmaceuticals (42). There are no reports on the role of γ-TmT as an AhR ligand, suggesting that CYP1A1 induction by γ-TmT could be indirectly AhR-dependent or AhR-independent and is currently being investigated. CYP1A1 is known to be highly expressed in breast epithelial cells, whereas CYP1B1 is found in mesenchymal cells (43), suggesting that factors other than AhR could also regulate the expression of these CYP genes. Whether γ-TmT specifically targets epithelial cells to induce CYP1A1 is being studied. Preferential induction of CYP1A1 over CYP1B1 by γ-TmT may shift E2 metabolism to a more protective pathway through increased generation of 2-OHE2, thereby inhibiting mammary tumorigenesis.

Oxidation of catechol E2 produces genotoxic quinones, which undergo redox cycling to form free radicals and ROS capable of damaging cellular macromolecules (7–9). 8-Isoprostane is a marker of oxidative stress produced in vivo by free radical–catalyzed peroxidation of arachidonic acid (44). Reduced concentration of serum 8-isoprostane in γ-TmT–treated ACI rats is suggestive of the protective role of γ-TmT against E2-induced lipid peroxidation. The Nrf2-mediated antioxidant pathway is an important cellular defense mechanism against oxidative damage (45). Upon activation, the transcription factor Nrf2 binds to antioxidant responsive elements, inducing the expression of phase II detoxification and antioxidant enzymes (45). We have previously reported that γ-TmT induces Nrf2-dependent antioxidant response in mammary hyperplasia of ACI rats (27, 28). In the present study, γ-TmT induced expression of downstream targets of Nrf2, such as NQO1, GCLM, and HMOX1. Antioxidant response was stimulated by γ-TmT in the mammary glands at 6 weeks, whereas no significant effect was observed at 18 weeks. γ-TmT–induced antioxidant response was highest in the mammary tumors at 31 weeks. This differential response could be explained by the changes in serum E2 levels of ACI rats and resultant oxidative stress at the different stages of mammary carcinogenesis. The levels of serum E2 at the 6-week time point (54.7 pg/mL) was higher than that at 18 weeks (48.4 pg/mL), leading to increased antioxidant response at 6 weeks compared with 18 weeks. At 31 weeks when serum E2 levels were highest (82.4 pg/mL), a dramatic induction of Nrf2-dependent genes was observed in response to γ-TmT treatment. NQO1 is a key phase II detoxification enzyme involved in the clearance of genotoxic quinones and reduction of oxidative stress. It catalyzes the reduction of quinones back to catechol E2, making them unavailable for reaction with DNA (46). Upregulation of the antioxidant enzymes, GCLM and HMOX1, by γ-TmT could help in maintaining redox homeostasis in cells.

In conclusion, γ-TmT inhibits E2-induced mammary tumor growth in MCF-7 xenografted mice. Nu/nu mice were implanted with E2 pellets (0.72 mg). After 2 days, MCF-7 cells were injected into the mammary fat pad of the mice. From the day of MCF-7 cell injection, mice were fed with control diet or different doses of γ-TmT diet for 9 weeks (n = 10/group). A, average tumor volume at weekly time points for the different treatment groups is shown. B, average tumor weight at 9 weeks is shown. Statistical significance: * P < 0.05; ** P < 0.01.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: S.D. Gupta, S. Sae-tan, J. Wahler, Y. Lin, C.S. Yang, N. Suh Development of methodology: S.D. Gupta, S. Sae-tan, J. Wahler, J.D. Shull, C.S. Yang, N. Suh Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S.D. Gupta, S. Sae-tan, J. Wahler, I.Y. So, L.C. Cheng, M.-J. Lee, C.S. Yang, N. Suh
Inhibition of Estrogen-Induced Tumorigenesis by Tocopherols

Grant Support

This work was supported by the National Institutes of Health grant R01 AT007036, the National Institute of Environmental Health Sciences grant ES005022, P30 ES023512, Charles and Johanna Busch Memorial Fund at Rutgers University, the Trustees Research Fellowship Program at Rutgers, and the New Jersey Commission on Cancer Research Postdoctoral Fellowship to Sourymati Das Gupta. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 14, 2015, revised June 2, 2015, accepted June 17, 2015; published OnlineFirst June 30, 2015.

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S.D. Gupta, S. Sae-tan, J. Wahler, M.J. Bak, M.-J. Lee, Y. Lin, W.J. Shih, S. Safe, C.S. Yang

Writing, review, and/or revision of the manuscript: S.D. Gupta, S. Sae-tan, J. Wahler, Y. Lin, W.J. Shih, J.D. Shull, S. Safe, C.S. Yang, N. Suh

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Sae-tan, J. Wahler, C.S. Yang, N. Suh

Study supervision: S. Sae-tan, J. Wahler, N. Suh

Acknowledgments

The authors thank Dr. Philip Furmanski for his critical comments on the article and the Laboratory of Animal Service at the Department of Chemical Biology, Rutgers University, for taking care of the animals.

References

Downloaded from cancerpreventionresearch.aacrjournals.org on October 18, 2017. © 2015 American Association for Cancer Research.
Das Gupta et al.

Dietary γ-Tocopherol–Rich Mixture Inhibits Estrogen-Induced Mammary Tumorigenesis by Modulating Estrogen Metabolism, Antioxidant Response, and PPARγ

Soumyasri Das Gupta, Sudathip Sae-tan, Joseph Wahler, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1940-6207.CAPR-15-0154

Cited articles
This article cites 49 articles, 15 of which you can access for free at:
http://cancerpreventionresearch.aacrjournals.org/content/8/9/807.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cancerpreventionresearch.aacrjournals.org/content/8/9/807.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.