Cancer Prevention Research

The Interaction of a High-Fat Diet and Regular Moderate Intensity Exercise on Intestinal Polyp Development in Apc^{Min/+}Mice

Kristen A. Baltgalvis, 1,3 Franklin G. Berger, 2,3 Maria Marjorette O. Peña, 2,3 J. Mark Davis 1 and James A. Carson 1,3

Abstract

Diet and exercise are two environmental factors that can alter colon cancer risk. The purpose of this study was to determine if regular moderate-intensity treadmill exercise training could attenuate polyp formation in Apc^{Min/+}mice. Four-week-old male Apc^{Min/+} mice (n = 12 per group) were assigned to AIN-76A Control, AIN-76A Exercise, Western Control, or Western Exercise treatment groups. Mice were weaned to these diets and either subjected to regular moderate-intensity treadmill exercise (18 m/min, 60 min/d, 6 d/wk) or remained sedentary for 6 weeks. Mice fed the Western-style diet consumed ~14% more calories and had 42% more epididymal fat compared with mice fed the AIN-76A diet. Exercise had no effect on fat pad mass with either diet treatment. Exercise reduced total intestinal polyp number by 50% and the number of large polyps (>1 mm diameter) by 67% in AIN-76A-fed mice. The Western-style diet increased polyp number by 75% when compared with AIN-76A-fed mice, but exercise did not decrease polyp number or alter polyp size in mice fed the Western-style diet. Markers of systemic inflammation and immune system function were improved with exercise in mice fed the AIN-76A diet. Mice fed the Western-style diet showed more inflammation and immunosuppression, which were not completely ameliorated by exercise. These data suggest that the induction of adiposity, inflammation, and immunosuppression by the Western-style diet may compromise the beneficial effect of moderate-intensity exercise on the intestinal polyp burden in Apc^{Min/+}mice.

Colon cancer is the third most common type of cancer among American men and women (1). The lifetime probability of developing colorectal cancer is 1 in 18 for men and 1 in 19 for women (1). The main risk factors for developing colorectal cancer include age, family history, and environmental causes. Two environmental risk factors for colon cancer include a high-fat diet and physical inactivity, which can lead to obesity (1–4). A recent meta-analysis has summarized the epidemiologic studies on colon cancer risk and obesity. When examining 26 studies including more than 70,000 colorectal cancer cases that reported body mass index, individuals with obesity (BMI >30 kg/m2) had a 20% greater risk for developing colorectal cancer compared with those with a normal body mass index (<25 kg/m2; ref. 5). Because the lack of regular physical activity and poor dietary habits contribute to body weight gain, it remains important to determine how these factors contribute to the initiation and progression of colon cancer.

The preventative effects of physical activity and/or exercise on colorectal cancer risk have been reviewed, and the data are convincing that physical activity is protective (3, 6–8). A meta-analysis examining the rates of colon cancer showed that both active men and women have an overall relative risk of 0.79 and 0.78, respectively, of developing colon cancer (6). The hypothesized mechanisms include improved immune function, decreased gastrointestinal transit time, decreased systemic and intestinal inflammation, and an improved metabolic profile, including decreases in circulating insulin-like growth factor I, cholesterol, and triglycerides (3, 8). Currently, there have not been any human studies used to use exercise or physical activity as an intervention to prevent colon cancer.

Animal models remain an important tool for examining the direct effects of physical activity on colorectal cancer prevention (9). The Apc^{Min/+} mouse has a nonsense mutation at codon 850 in the adenomatous polyposis coli (ApC) gene, which results in a truncated protein, predisposing these mice to both small and large intestinal adenomas (10). Germ-line mutations in the APC gene in humans are responsible for the initiation.
Cancer Prevention Research

Table 1. Dietary composition of the AIN-76A and Western-style diets given to male Apc^{Min/+} mice for 6 wk

<table>
<thead>
<tr>
<th></th>
<th>AIN-76A</th>
<th>Western</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>20.3%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>66.0%</td>
<td>50.0%</td>
</tr>
<tr>
<td>Fat</td>
<td>5.0%</td>
<td>21.0%</td>
</tr>
<tr>
<td>kcal/g</td>
<td>3.9</td>
<td>4.7</td>
</tr>
<tr>
<td>(g/kg diet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caesin</td>
<td>200</td>
<td>195</td>
</tr>
<tr>
<td>>dl-Methionine</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>>l-Cysteine</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>Corn starch</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Sucrose</td>
<td>500</td>
<td>341</td>
</tr>
<tr>
<td>Maltodextrin</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Cellulose</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Milk fat</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>Corn oil</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Mineral mix</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Vitamin mix</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Choline bitartrate</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>Ethoxyquin</td>
<td>—</td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td>1,000</td>
<td>1,001.54</td>
</tr>
</tbody>
</table>

and progression of familial adenomatous polyposis, a genetic form of colon cancer (11). In addition, 60% of all sporadic colon cancers have a mutated APC gene (11). The Apc^{Min/+} mouse has been extensively used to examine both dietary and physical activity–induced mechanisms related to colon cancer prevention (12, 13).

The effect of exercise on Apc^{Min/+} intestinal polyp formation has been well investigated (14–18), and the majority of these studies find beneficial effects. Understanding the benefits of regular exercise is complex because beneficial outcomes can be affected by the type of activity, duration, intensity, and the accumulated amount of weekly activity (19). Studies examining exercise in the Apc^{Min/+} mouse have varied by the type of physical activity, which have used treadmill running or voluntary wheel running. Treadmill running protocols allow for the application of a defined dose of exercise and more closely mimic human exercise. The mice run at a constant intensity for a defined period of time. With voluntary wheel running, mice accumulate a considerably greater amount of activity by running intermittently throughout the night at uncontrolled durations and intensities. Nevertheless, both modalities improve the oxidative capacity of skeletal muscle (17, 18) but may differentially affect health outcomes due to the different dose of exercise applied. Previous studies have shown a beneficial effect of voluntary wheel running on the number of total intestinal polyps (15, 16) or regional reductions in polyp number in Apc^{Min/+} mice following treadmill exercise training (14, 18). Our lab has published that 9 weeks of moderate-intensity treadmill running can decrease both intestinal polyp number and size in male Apc^{Min/+} mice, whereas in this same study, voluntary wheel running was not effective (17). We noted that mice with access to voluntary activity wheels consumed more calories during the study to maintain body weight, and we hypothesized that a negative caloric balance may be a potential mechanism for the exercise-induced reduction in intestinal polyp burden.

Caloric balance is an important factor contributing to tumorigenesis. Negative caloric balance induced by restricting caloric intake can prevent the development of tumors in Apc^{Min/+} mice (15, 20, 21). Likewise, excess consumption of calories can promote tumorigenesis. Newmark et al. (22) created the original Western-style stress diet based on the AIN-76A diet. It contained a higher percentage of calories from dietary fat (20% instead of 5%), increased phosphate, decreased vitamin D, and decreased calcium to mimic the relative percentages consumed by Americans. Administration of this diet to mice and rats induced colonic adenomas and lesions, whereas tumors or other precancerous lesions did not develop in rodents fed a standard defined diet (22–25). Apc1638 mice (mutation at codon 1638 instead of codon 850) and Apc^{Min/+} mice fed the Western-style diet developed more adenomas and carcinomas than mice fed the AIN-76A diet (26–29). Ju et al. (16) recently showed that increased physical activity through unrestricted voluntary wheel running in Apc^{Min/+} mice was effective at reducing the intestinal tumor burden when the mice were fed the Western-style diet. These data suggest that increased dietary fat intake and nutrient deprivation can promote tumorigenesis, but that increased physical activity may be able to prevent polyp development.

One of the mechanisms by which exercise may alter polyp development is through its well-documented effects on improving the function of the immune system and ablating chronic inflammation (30–36). Chronic inflammation arises from improper functioning of the innate and adaptive immune systems, and chronic inflammation enhances tumor development (37). This may be especially important in the Apc^{Min/+} mouse because they show chronic inflammation. Our laboratory has shown that circulating interleukin-6, a proinflammatory cytokine, is elevated in Apc^{Min/+} mice, but is reduced with exercise training (17). Haptoglobin is an anti-inflammatory acute-phase protein secreted by the liver. Its secretion increases during inflammation, and it is elevated in the Apc^{Min/+} mouse. In fact, haptoglobin-null Apc^{Min/+} mice (38) and lymphocyte-depleted Apc^{Min/+} mice (39, 40) show more polyps, and interleukin-6–null Apc^{Min/+} mice show less polyps (41). Splenomegaly occurs in Apc^{Min/+} mice (42, 43). Spleen size is directly related to the polyp burden, and splenomegaly can be reduced with exercise (17). Together, these data show the importance of systemic inflammation in polyp formation.

The American Institute of Cancer Research recommends consumption of a low-fat diet that is rich in fruits and vegetables, maintenance of a healthy weight, and an accumulation of at least 30 minutes of physical activity daily (44). Furthermore, new health-related exercise guidelines released in 2008 call for 30 minutes of moderate-intensity exercise most days of the week (19). Because most Americans do not follow these dietary or activity guidelines, it is unknown whether a defined period of moderate exercise would have a preventative effect on intestinal polyp formation when one consumes a high-fat diet. The purpose of this study was to determine if regular
moderate-intensity treadmill exercise, which can reduce the ApcMin/+ intestinal tumor burden, can also be beneficial when consuming a high-fat diet. Our research design subjected young ApcMin/+ mice to a 6-week dietary and exercise training regimen, and we examined the polyp burden in the nascent stage of dietary-induced obesity. To remove any confounding effects of vitamins or minerals, our study used a Western-style diet that was high in saturated fat and overall caloric density, but retained the same vitamin and mineral content as the control diet. Our hypothesis was that moderate-intensity treadmill running would be effective at attenuating the Western diet–induced increase in tumor burden in the ApcMin/+ mouse.

Materials and Methods

Animals and dietary treatments

Male ApcMin/+ mice were purchased (The Jackson Laboratory) and bred with female C57BL/6 mice in the University of South Carolina animal resource facility (17). Offspring were genotyped as heterozygotes by reverse transcription-PCR for the Apc gene by taking tail snips at weaning. The room was maintained on a 12 h:12 h light/dark cycle with the light period starting at 7:00 a.m. Mice were randomly assigned and weaned to the following diets: (a) AIN-76A or (b) Western-style diet (Research Diets, Inc.). Table 1 lists the components of each diet. Group-housed mice were fed weekly and food was weighed at that time. All animal experimentation was approved by the University of South Carolina Institutional Animal Care and Use Committee.

Treadmill protocol

The treadmill training program was done as previously described (17, 45), except the length of the training program was 6 wk instead of 8 wk. Briefly, 4-wk-old male mice were randomly divided into Control and Exercise groups, making four treatment groups in total: (a) AIN-76A Control (n = 12), (b) AIN-76A Exercise (n = 12), (c) Western Control (n = 12), and (d) Western Exercise (n = 12). The running protocol consisted of a brief 5-min warm-up (10 and 14 m/min), followed by 55 min at 18 m/min and 5% grade. Mice were run at the beginning of their dark cycle (7:00 p.m.) under red lights 6 d/wk for a total of 6 wk. Controls were kept next to the treadmill, but remained in their cages during training. All mice were sacrificed at 10 wk of age, at least 36 h after the last bout of exercise.

Tissue and blood collection

Under fasting conditions, mice were anesthetized with a s.c. injection of ketamine/xylazine/acepromazine cocktail (1.2 mL/kg body weight). Blood was collected from the retro-orbital sinus (~75 μL) and 10 μL of whole blood were immediately analyzed on a veterinary hematology analyzer (VetScan, Abaxis). The gastrocnemius muscle, epididymal fat pad, and spleen were removed and immediately frozen in liquid nitrogen. The tibia was also removed and the length was measured with vernier calipers to determine animal size. The small intestines were carefully dissected distally to the stomach and proximally to the cecum. The large intestine was removed from the distal end of the cecum to the anus. Mesentery tissue was removed with tweezers and the small intestine was cut into four sections (duodenum, jejunum, proximal ileum, and distal ileum). All intestinal sections were flushed with PBS, opened longitudinally with scissors, and flattened with a cotton swab between two pieces of blotting paper. Intestinal sections were fixed in 10% buffered formalin for 24 h. After fixation, intestinal sections were transferred to 70% ethanol and stored at room temperature. Terminal blood was drawn from the inferior vena cava with heparin and stored on ice. Blood samples were centrifuged and plasma was stored at −80°C until further analysis.

Polyp counts

Polyp counts were done as previously described (17). Formalin-fixed intestinal sections from all animals were briefly stained in 0.1% methylene blue, and they were counted by the same investigator who was blinded to the treatments. Polyps were counted under a dissecting microscope, using tweezers to pick through the intestinal

Fig. 1. Total intestinal polyp number, location, and size in 10-wk male ApcMin/+ mice fed the AIN-76A or Western-style diet following 6 wk of treadmill training. A, total number of polyps. B, location of polyps. C, large polyps. Large polyps were defined as >1 mm in diameter. B, small polyps. Small polyps were defined as <1 mm in diameter. †, significant difference from AIN-76A Control. **, main effect of diet.
Peroxidase activity was squelched with 6% H2O2 in methanol for 30 min. Sections were deparaffinized in xylene and rinsed in 100% ethanol. Villi were Swiss-rolled and were cut on a microtome into 4-μm sections. Formalin-fixed, paraffin-embedded intestinal sections from each animal, representing four different areas of the small intestine, were examined for β-catenin staining. The number of polyps containing intense nuclear β-catenin staining was counted and polyp diameter was measured at ×400 magnification by a technician blinded to the treatments.

Immunohistochemistry

Immunohistochemical detection of β-catenin staining of polyps was done as previously described (45). Four slides were prepared from each animal, representing four different areas of the small intestine: (a) duodenum, (b) jejunum, (c) proximal ileum, and (d) distal ileum. Formalin-fixed, paraffin-embedded intestinal sections were Swiss-rolled and were cut on a microtome into 4-μm sections. Sections were deparaffinized in xylene and rinsed in 100% ethanol. Peroxidase activity was squelched with 6% H2O2 in methanol for 30 min. Antigen retrieval was accomplished with 0.1% bovine trypsin for 30 min at 37°C. Sections were blocked for 30 min in rabbit serum. Slides were incubated 1:100 with β-catenin (BD Biosciences) for 1 h at 37°C. Sections were rinsed in PBS and incubated 1:200 with anti-rabbit peroxidase-conjugated antibody for 1 h at 37°C. Color detection was visualized with an ABC detection kit and 3,3′-diaminobenzidine (Vector Laboratories). Polyps were identified by foci containing intense nuclear β-catenin staining. The number of polyps was counted and polyp diameter was measured at ×400 magnification by a technician blinded to the treatments.

Results

Polyp burden

It has previously been shown that a Western-style diet increases the polyp burden in ApcMin/+ mice and induces polyps in wild-type mice (22–28). Because the diet we used did not contain altered amounts of calcium, phosphorous, or vitamin D, our first main objective was to determine if our Western-style diet could increase the polyp burden in ApcMin/+ mice. In the current study, control mice fed the Western-style diet had overall polyp counts that were 75% greater compared with control mice fed the AIN-76A diet (Fig. 1A). These data suggest that increased fat consumption alone, particularly saturated fat, can increase the intestinal polyp burden in ApcMin/+ mice.

Our lab has previously shown that moderate-intensity treadmill running decreases the overall intestinal polyp burden in ApcMin/+ mice fed rodent chow. Our second objective was to replicate our previous exercise-induced reduction in polyp burden in ApcMin/+ mice fed a defined diet (AIN-76A) instead of rodent chow. We also wanted to extend this finding using the Western-style diet. In the current study, 6 weeks of moderate-intensity treadmill running resulted in 50% fewer polyps in mice fed the AIN-76A diet (Fig. 1A), which is similar to our previous results using rodent chow (17). However, when mice were fed the Western-style diet and were exercised, this had no effect on overall polyp number (Fig. 1A).

In addition to the total number of polyps, polyp location was also analyzed (Fig. 1B). Among control mice, the Western-style diet preferentially increased the number of polyps only in the jejunum by 2.7-fold compared with the AIN-76A diet. ApcMin/+ mice fed the AIN-76A diet and that exercised had 33% fewer polyps in the jejunum and 42% fewer polyps in the ileum compared with sedentary control mice. Control
and exercised Apc^{Min/+} mice fed the Western-style diet had similar polyp counts in each area of the intestinal tract.

Polyp size was also examined in each treatment group (Fig. 1C and D). Intestinal polyps were counted and classified as being large (>1 mm in diameter) or small (<1 mm in diameter). The Western-style diet did not induce an increase in large polyps among control mice (Fig. 1C). The greater number of overall polyps in mice fed the Western-style diet was mostly due to more small polyps (Fig. 1D). There was a main effect of diet (<0.001) on the number of small polyps. When collapsing the Control and Exercise treatment groups, mice fed the Western-style diet (26 ± 4 small polyps) had nearly three times as many small polyps than mice fed the AIN-76A diet (9 ± 1 small polyps). The number of large polyps was reduced by 67% with treadmill running in mice fed the AIN-76A diet, but the number of small polyps was unaffected. Similar to overall polyp number, treadmill running had no effect on the number of large polyps or small polyps in mice fed the Western-style diet.

In addition to counting polyps with methylene blue staining, we also identified polyps by immunohistochemical staining for β-catenin (Fig. 2A). One caveat to this method is that it does not detect all polyps because only 4-μm slices at four different locations of the small intestinal tract are examined. Nevertheless, we found very similar results when counting the total number of polyps compared with immunohistochemical detection of polyps. We detected twice as many β-catenin-positive polyps in control mice fed the Western-style diet compared with AIN-76A-fed mice (Fig. 2B). Exercised mice fed the AIN-76A diet had 67% less β-catenin-positive polyps compared with sedentary control mice. The number of β-catenin-positive polyps remained the same between control and exercised mice fed the Western-style diet. Taken together, these data show that exercise is not effective in lowering the overall polyp burden in Apc^{Min/+} mice when the mice are fed the Western-style diet.

Adiposity measurements

Because increased adiposity is a risk factor for colorectal cancer, we next examined food intake, mouse size, and the quantity of adipose tissue. Food intake was measured weekly for each cage of mice and averaged together for each of the 6 weeks. There were no differences in food intake (P = 1.000) between AIN-76A Control (2.6 ± 0.1 g/d), AIN-76A Exercise (2.6 ± 0.0 g/d), Western Control (2.4 ± 0.1 g/d), and Western Exercise (2.4 ± 0.1 g/d) treatment groups. This also means that vitamin and mineral consumption was the same among the treatment groups. However, because the Western-style diet contained ~20% more calories than the AIN-76A diet (see Table 1), there was a main effect of diet on daily caloric intake (P = 0.003). Mice fed the Western-style diet (11.5 ± 0.3 kcal/d) consumed ~14% more calories per day than mice fed the AIN-76A diet (10.1 ± 0.1 kcal/d).

Apc^{Min/+} mouse body weights, tibia lengths, and gastrocnemius muscle weights are listed in Table 2. There was a trend for a main effect of diet on body mass (P = 0.057). When combining Control and Exercise treatment groups, mice being fed the Western-style diet (25.8 ± 0.5 g) tended to be 5% heavier than mice fed the AIN-76A diet (24.6 ± 0.3 g). There were no differences in tibia length (P = 0.951) or gastrocnemius muscle mass (P = 0.648) between the treatment groups. There was a main effect of diet on epididymal fat pad mass (Fig. 3A). When combining both Control and Exercise groups, mice fed the Western-style diet had 42% more fat (770 ± 67 mg) compared with mice fed the AIN-76A diet (541 ± 32 mg; P = 0.003). However, exercise training did not lower epididymal fat pad mass in either dietary treatment group. Because we only examined one fat depot, we used circulating leptin as a marker of global adiposity. There was significant correlation between circulating leptin and epididymal fat pad mass (r = 0.658; P < 0.001). Plasma leptin was not different between the treatment groups (Fig. 3B; P = 0.473). There were also no correlations between polyp number and epididymal fat pad mass (Fig. 3C; r = -0.030; P = 0.841) or polypl number and circulating leptin (Fig. 3D; r = 0.114; P = 0.580). These data suggest that the Western-style diet increases epididymal fat mass, but this is not the lone factor responsible for increased polyp number in Apc^{Min/+} mice fed the Western-style diet. Furthermore, the mechanism of the reduced polyp burden with exercise training in mice fed the AIN-76A diet seems to be independent of reductions in adiposity.

Inflammatory and immune responses

Adipose tissue contains inflammatory cells and can secrete cytokines that influence the systemic inflammatory state of the animal. We determined several inflammatory markers to see if the Western-style diet or exercise could influence them. Blood samples were taken at the end of the exercise training period to examine plasma levels of haptoglobin, a known acute-phase protein that influences the polyp burden in Apc^{Min/+} mice (38), and WBC count. The Western-style diet induced plasma haptoglobin levels 8.4 times higher over AIN-76A control mice (Fig. 4A). Treadmill running had no effect on circulating haptoglobin levels in mice on either diet. Increased spleen size, or splenomegaly, is another indicator of systemic inflammation. We have previously shown that treadmill running decreases spleen size in Apc^{Min/+} mice (17). In the current study, spleen mass was 18% lower in exercised mice fed the

| Table 2. Body weight, tibia length, and gastrocnemius muscle mass in 10-wk-old male Apc^{Min/+} mice fed the AIN-76A or Western-style diet following 6 wk of treadmill training |
|-----------------|-----------------|-----------------|-----------------|
| | AIN-76A | Western |
| | Control (n = 12) | Exercise (n = 12)| Control (n = 12) | Exercise (n = 12) |
| Body mass (g) | 24.6 ± 0.4 | 24.5 ± 0.6 | 26.5 ± 0.8 | 25.2 ± 0.7 |
| Tibia length (mm) | 15.8 ± 0.1 | 15.9 ± 0.1 | 15.9 ± 0.1 | 15.8 ± 0.1 |
| Gastrocnemius mass (mg) | 117 ± 2 | 117 ± 3 | 120 ± 4 | 116 ± 5 |
AIN-76A diet compared with control mice (Fig. 4B). However, mice fed the Western-style diet did not see the same improvement with spleen mass. These data suggest that the Western-style diet induces more systemic inflammation, but that exercise training does not alleviate the inflammation when mice are fed this high-fat diet.

A properly functioning immune system is important for preventing cancer, and this functioning of this system is improved with moderate-intensity exercise training (35, 36). There was a main effect of diet on total WBC count (Fig. 4C; \(P < 0.050 \)). Mice fed the Western-style diet (4.9 ± 0.3 cells × 10^3/mm^3) had a 13% reduction in total WBC count compared with AIN-76A-fed mice (5.6 ± 0.2 × 10^3 cells/mm^3). The different subpopulations of immune cells were also determined. There were no differences in total lymphocyte number (\(P = 0.908 \)). However, the number of monocytes was 28% higher and granulocytes were 111% greater in exercised mice fed the AIN-76A diet compared with control mice. Control mice fed the Western-style diet had 24% fewer monocytes but had similar granulocytes compared with control mice fed the AIN-76A diet. Similar to the AIN-76A diet, exercise training induced a 26% increase in monocyte number in mice fed the Western-style diet. However, treadmill running did not improve granulocyte number in mice fed the Western-style diet. In both subpopulations of immune cells, exercised mice fed the Western-style diet had fewer immune cells than exercised mice on the AIN-76A diet.

Discussion

The overall goal of this article was to study the interaction between a high-fat diet and moderate-intensity treadmill exercise for the prevention of intestinal adenoma development in the Apc^Min/+ mouse. Our main finding was that Apc^Min/+ mice undergoing moderate-intensity exercise training and fed the Western-style diet were not able to decrease the number of intestinal adenomas. However, when mice were fed the AIN-76A diet, exercise was effective at reducing polyp number and size. Adiposity, chronic inflammation, and immunosuppression were examined to help determine why moderate exercise training failed to reduce the polyp burden in mice fed the Western-style diet. Mice fed the Western-style diet increased epididymal fat pad mass, whereas moderate exercise training was not sufficient to decrease this fat depot. The Western-style diet also induced markers of systemic chronic inflammation, and moderate exercise did not alleviate this inflammatory state. There were also indications of immunosuppression that were induced by the Western-style diet that were not improved by moderate-intensity exercise. Together, these data show that 6 weeks of moderate-intensity exercise training cannot suppress the greater tumor burden, adiposity, systemic inflammation, and immunosuppression induced by a Western-style diet.

It has been well documented that a Western-style diet increases cancerous lesions in both wild-type and Apc^Min/+ mice (22–28). We confirmed this by showing that in as little as 6 weeks, a diet high in saturated fat can nearly double the intestinal polyp burden in Apc^Min/+ mice. Unfortunately, moderate-intensity exercise training was unable to prevent polyp formation when mice were fed the Western-style diet. One reason may be the mechanism of how exercise reduces the polyp burden in mice fed a normal diet. First, we confirmed the results of our 2005 study (17) by showing that male Apc^Min/+ mice fed a normal diet and that engage in 6 weeks of moderate-intensity treadmill running have a significant reduction in their polyp burden. This decrease in polyp number was
mostly due to a reduction in large polyps. These data may suggest that exercise training not only prevents adenoma formation but also slows adenoma growth. However, the number of large polyps was the same between AIN-76A and Western Control mice. The Western-style diet substantially increased the number of small polyps. Exercise training may not have been effective in decreasing the polyp burden in mice fed the Western-style diet because the Western-style diet did not accelerate polyp growth.

Ju et al. (16) also recently examined the role of exercise when ApcMin/+ mice were fed the Western-style diet. However, their results differed from ours because they found that voluntary wheel running was effective at lowering the intestinal polyp burden in ApcMin/+ mice when mice were fed either a normal or a high-fat diet. There are some differences to note between the studies, such as the mode of exercise training (treadmill versus voluntary wheel running), gender (male versus female mice), and length of training (6 versus 9 wk). With treadmill running, our mice ran at 18 m/min for nearly an hour, accumulating 1.1 km in one training session, and having six sessions per week. Ju et al. (16) report that mice fed the Western-style diet voluntarily ran 3.5 km/d for 7 d/wk. When comparing accumulated exercise activity (km/wk), mice running on activity wheels ran three times more per week and five times more over the duration of the study compared with our mice that ran on the treadmill. It is not possible to compare the intensity of these exercise modalities due to the inherent variability with wheel running exercise. These data may suggest that a longer duration of exercise is necessary to prevent polyp formation when consuming a high-fat diet.

One advantage to our study was that it was designed to test the effect of both diet and exercise on the number of intestinal polyps. We used the appropriate control diet (AIN-76A) and the length of training was the same between mice fed the AIN-76A diet and mice fed the Western-style diet. The control diet used by Ju et al. (16) contained a different composition of vitamins and minerals compared with the Western-style diet. In addition, mice were exercised for different lengths of time on each diet. Therefore, the interaction between a high-fat diet and exercise could not be directly compared. Despite the caveat in research design, sedentary mice fed each diet had similar tumor counts. This could explain the discrepancy between the two studies, suggesting that exercise is only effective when the intestinal polyp burden is not being accelerated by another factor, such as a dietary component or a carcinogen.

Adipose tissue is a risk factor for cancer (4) and adiposity increases when mice are fed the Western-style diet (16, 46, 47). We determined if the Western-style diet increased adipose tissue mass, if exercise training could decrease adipose tissue mass, and if adipose tissue mass was related to polyp burden. First, the Western-style diet increased epididymal fat pad mass in ApcMin/+ mice, similar to other studies.

![Fig. 4. Inflammatory and immune state in 10-wk male ApcMin/+ mice fed the AIN-76A or Western-style diet following 6 wk of treadmill training. A, plasma haptoglobin. B, spleen mass. C, total WBC count. D, monocytes and granulocytes. *, significant difference from AIN-76A Control. †, significant difference from AIN-76A Exercise. ‡, significant difference from Western Control. **, main effect of diet.](image-url)
However, exercise did not decrease epididymal fat pad mass in mice on either diet. This was confirmed by circulating leptin, a marker of global adiposity. We also could not detect correlations between polyp number and epididymal fat pad mass or polyp number and circulating leptin. These data suggest that the overall polyp burden is not dependent on total fat content. In addition, because mice fed the AIN-76A diet did not experience fat loss, but decreased polyp number with exercise training, the mechanism of reduced polyp number via exercise is not mediated through a reduction in fat loss. These data are in agreement with previous work that failed to find an association between fat pad mass and polyp number (16). More work is needed to identify the factors induced by the Western-style diet that promote tumorigenesis.

One possible system that may be modified by a high-fat diet is the immune system. A few investigators have examined the immune response in ApcMin/Max mice. Splenomegaly has been documented in ApcMin/Max mice compared with wild-type mice (42, 43). It has also been reported that there are fewer Peyer's patches in ApcMin/Max mice in the small intestine and more megakaryocytes in the spleen compared with wild-type mice (43). However, circulating WBC and the intestinal immune response are similar between ApcMin/Max and wild-type mice (43, 48). Alternatively, this may be a problem for the ApcMin/Max mouse because the immune system should respond to the intestinal polyp burden. Exercise may help with this response in the ApcMin/Max mouse because the immune system function improves with moderate-intensity exercise. This is reflected in both an increase in the number of immune cells and an improvement in their function. For example, moderate-intensity treadmill running in wild-type mice improves macrophage antitumor cytotoxicity (30-34) and neutrophil respiratory burst activity (49). In the current study, the numbers of monocytes and granulocytes were improved with exercise training in mice fed the AIN-76A diet. Splenomegaly, a marker of systemic inflammation, was also reduced with exercise training. These data suggest that exercise training in the ApcMin/Max mouse improves the immune system and decreases systemic inflammation. These additional immune cells may help prevent malignant cells from developing into polyps or possibly attack formed polyps by limiting their growth.

When mice were fed the Western-style diet, they had lower numbers of both monocytes and granulocytes compared with mice fed the AIN-76A diet. Haptoglobin, another inflammatory marker, was also induced in mice fed the Western-style diet. Exercise training also improved the number of monocytes, but not granulocytes, in mice fed the Western-style diet. If the innate immune system response is important for the exercise-induced reduction in polyp burden, these data could mean two things. First, granulocytes may be more important than monocytes for preventing adenoma formation and growth. Second, a component of the Western-style diet, such as saturated fat, may impair monocyte and granulocyte function. For example, macrophages and neutrophils can be recruited to adipose tissue by saturated fat (50), possibly limiting their ability to prevent tumor formation at the site of the intestine. More work is needed to determine the effect of the Western-style diet on monocyte/macrophage and granulocyte function. Future studies are also needed to determine if the innate immune response is responsible for the exercise-induced reduction in polyp burden in ApcMin/Max mice.

It is important to note some limitations to our study. First, we used relatively young mice in our study. Colorectal cancer typically affects much older adults, and older ApcMin/Max mice may exhibit a different response to both exercise and a high-fat diet. Second, the length of the treadmill running protocol was 6 weeks, rather than the 8-week treadmill training in our previous studies (17, 45). This corresponded to the age of mice being 10 weeks of age at the end of the study, instead of 12 weeks old. The rate of polyp formation is typically much slower in young ApcMin/Max mice and accelerates after 10 weeks of age (51). The purpose of this change was to build on our previous findings and determine if exercise can prevent polyp formation before the rapid phase of polyp formation. It is possible that our results may have been different if the length of the treadmill training protocol was longer during this period of rapid polyp formation. Third, the composition of our Western-style diet was slightly different compared with others using the Western-style diet (22-25, 27, 28). The diet that we used was only modified in total fat content. The source of carbohydrate was decreased, and the source of fat, corn oil, was replaced with mostly milk fat. Other diets manipulate calcium, phosphorous, and vitamin D content in addition to fat (22-25, 27, 28). Our data suggest that manipulating the quantity and composition of dietary fat alone can affect adenoma development, as well as the effect of exercise on adenoma development. Finally, we should note that although epididymal fat pad was increased in mice fed the Western-style diet, overall body mass was not greater. This would suggest that our mice were just starting to become obese. The life span of the mouse, anemia, willingness to exercise, and cachexia were all limiting factors that prevented us from significantly lengthening the experiment to study an obese ApcMin/Max mouse.

A healthy diet and regular exercise or physical activity are recommended by the American Institute for Cancer Research to prevent cancer (44). Our data support this concept in that both a healthy diet and exercise are necessary to prevent colorectal cancer. Exercising when still consuming a diet high in fat is not sufficient to prevent adenoma formation in the ApcMin/Max mouse. The exercise stimulus needed to prevent polyp formation may be greater when consuming a high-fat diet. The exercise-induced effect on polyp burden is not mediated through a reduction in adiposity because exercise did not lower epididymal fat pad mass and there was not an association between polyp number and fat pad mass. The interaction of a high-fat diet and exercise could be mediated through the positive effects of exercise and the negative effects of the Western-style diet on the immune/inflammatory response.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Manish Dave, Tia Davis, Valerie Kennedy, Joseph McClung, and Tyrone Washington for technical assistance.
References

The Interaction of a High-Fat Diet and Regular Moderate Intensity Exercise on Intestinal Polyp Development in ApcMin/+ Mice

Kristen A. Baltgalvis, Franklin G. Berger, Maria Marjorette O. Peña, et al.

Updated version Access the most recent version of this article at:
doi:10.1158/1940-6207.CAPR-09-0017

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.