Enhancing Mitochondrial Respiration Suppresses Tumor Promoter TPA Induced PKM2 Expression and Cell Transformation in Skin Epidermal JB6 Cells

Jennifer A. Wittwer¹², Delira Robbins¹, Fei Wang¹³, Sarah Codarin¹⁴, Xinggui Shen⁵, Christopher G. Kevil⁵, Ting-Ting Huang⁶, Holly Van Remmen⁷, Arlan Richardson⁷, Yunfeng Zhao¹,*

¹Department of Pharmacology, Toxicology & Neuroscience and ⁵Department of Pathology, LSU Health Sciences Center in Shreveport, Shreveport, LA; ²Department of Molecular Genetics, Ohio State University, Columbus, OH; ³College of Life Science, Jilin University, Changchun, China; ⁴Southwood High School, Shreveport, LA; ⁶Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA and GRECC, VA Palo Alto Health Care System, Palo Alto, CA; ⁷The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX.

*Corresponding Author:
Yunfeng Zhao, Ph.D.
Department of Pharmacology, Toxicology & Neuroscience
LSU Health Sciences Center in Shreveport
Shreveport, LA 71130-3932
Tel: (318) 675-7876  Fax: (318) 675-7857
Email: yzhao1@lsuhsc.edu
This work was supported by Grant Number R03CA128077 from the National Cancer Institute (Zhao).

Running Title: Mitochondrial respiration suppresses cell transformation

Key Words: Mitochondria, tumor promotion, PKM2, JB6 cells
ABSTRACT

Differentiated cells primarily metabolize glucose for energy via the Tricarboxylic Acid Cycle and oxidative phosphorylation, but cancer cells thrive on a different mechanism to produce energy characterized as the Warburg Effect, which describes the increased dependence on aerobic glycolysis. The M2 isoform of pyruvate kinase (PKM2), which is responsible for catalyzing the final step of aerobic glycolysis, is highly expressed in cancer cells and may contribute to the Warburg Effect. However, whether PKM2 plays a contributing role during early cancer development is unclear. In our studies, we are attempting to elucidate the effect of varying mitochondrial respiration substrates on skin cell transformation and expression of PKM2. Tumorgenicity in murine skin epidermal JB6 P+ (promotable) cells was measured in a Soft Agar Assay using 12-O-tetradecanoylphorbol 13-acetate (TPA) as a tumor promoter. We determined a significant reduction in cell transformation upon pretreatment with the mitochondrial respiration substrate succinate or malate/pyruvate. We have observed increased expression and activity of PKM2 in TPA treated JB6 P+ cells and pretreatment with succinate or malate/pyruvate suppressed the effects. In addition, TPA treatment also induced PKM2 whereas PKM1 expression was suppressed in mouse skin epidermal tissues in vivo. In comparison with JB6 P+ cells, the non-promotable JB6 P- cells showed no increase in PKM2 expression or activity upon TPA treatment. Knockdown of PKM2 using a siRNA approach significantly reduced skin cell transformation. Thus, our results suggest that PKM2 activation could be an early event and play a contributing role in skin tumorigenesis.
INTRODUCTION

There are a variety of ways in which cancer cells distinguish themselves from normal cells including, but not limited to, the way they obtain energy. Cellular energy stored as adenosine triphosphate (ATP) is produced through respiration, which is comprised of a set of metabolic reactions that take place in the cytosol (glycolysis) and mitochondria (mitochondrial respiration) to convert nutrients (e.g. glucose) into ATP. Otto Warburg, who first noted a difference between the metabolism of glucose in cancer cells and normal adult tissues, observed that cancer cells take up glucose at higher rates than normal tissue but use a smaller fraction of this glucose for oxidative phosphorylation (1). This phenomenon is therefore termed the Warburg effect or “aerobic glycolysis”, which is now well recognized (2-4).

Associated with this metabolic switch is up-or down-regulation of important metabolic enzymes. One such enzyme is the M2 splice isoform of pyruvate kinase (PKM2). Pyruvate kinase, which is an essential enzyme involved in controlling glucose metabolism as the final rate-limiting step in glycolysis, has a role worth noting in tumors (5). Vertebrates have four tissue-specific isozymes of pyruvate kinase: an L isozyme present in the liver and kidney, an R isozyme found primarily in erythrocytes and two M isozymes, M1 and M2, the prior identified in most adult tissues and the latter in embryonic tissues and adult stem cells (6-8). The M1 and M2 isoenzymes are found on the same gene but arise from alternative splicing of exons 9 and 10 of the PK-M gene regulated by heterogeneous nuclear ribonucleoproteins (hnRNPs) (9-12). These isoenzymes have 23 different amino acids along a 56 amino-acid stretch, which enables each isoenzyme to have a unique region for allosteric regulation (13). Not only do we
observe a disparity between PKM1 and PKM2 splicing and expression in embryonic and adult tissues, but it also arises when examining cancer cells. PKM2 is primarily expressed in most human cancers, which include colorectal cancer, lung cancer, liver cancer, breast cancer, brain cancer, kidney cancer and likely in cervical cancers (14-28). In oppose to PKM2, PKM1 is actively repressed in cancer cells (11, 14, 29). Due to these recent discoveries between the relationship of certain common cancers and the expression of the metabolic gene PKM2, a connection relating abnormal mitochondrial function and cancer was identified. However, at what stage PKM2 is unregulated and whether it is important for early cancer development are unknown. Since cancer cells prefer to bypass mitochondrial oxidative phosphorylation to generate ATP, we are also interested in whether boosting mitochondrial respiration can prevent tumorigenesis. Herein, we used skin epidermal JB6 cells as well as skin carcinogenesis mouse models, both well characterized to study tumor promotion, to address these questions in early skin tumorigenesis.
MATERIALS AND METHODS

2.1 Cell lines, reagents and treatment

Murine skin epidermal JB6 Cl-41 P+ (promotable) and Cl 30-7b P- (non-promotable) cells were used to study tumor promotion (both cell lines were purchased from American Type Culture Collection). Cells were grown in EMEM medium containing 4% fetal bovine serum, 1% glutamine, and 1% penicillin in a 37°C incubator under 5% CO₂. The levels of mycoplasma pathogens were routinely (once every three months) detected in these cells using a MycoAlert Mycoplasma Detection Kit purchased from Lonza (Rockland, ME), and the results were negative.

The tumor initiator dimethylbenz[α]anthracene (DMBA, Sigma, St. Louis, MO) was dissolved in dimethyl sulfoxide (DMSO, Sigma); the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA, Sigma) was also prepared in DMSO. The final concentration of TPA for the cell culture studies was 100 nM except for the soft agar assay, which was 5 nM. Malate, pyruvate, and succinate (Sigma) were dissolved in phosphate buffered saline (PBS, pH 7.4) in the concentration of 15, 30, and 30 mM, respectively, and sterilized by passing through a 0.22 μM filter. Malate + pyruvate or succinate alone was diluted in the ratio of 1:400 for all the experiments. Succinate or malate plus pyruvate are the substrates often used to measure mitochondrial respiration. Malate alone is unable to drive respiration; it needs to be combined with pyruvate. The concentrations of the mitochondrial substrates match that for the mitochondrial respiration assay (30). All of the other chemicals were purchased from Sigma.

2.2 Animal treatments
Twelve C57BL/6, six DBA/2 female mice (6-8-week old, purchased from the Jackson Laboratory [Bar Harbor, Maine]), six MnSOD (manganese superoxide dismutase) transgenic (31) and six non-transgenic littermates (both in C57BL/6 background) were housed in the LSUHSC-S Animal Resource Facility under standard regulations. The LSUHSC-S Animal Facility is AAALAC approved and maintains a consultation team of two veterinarians. The program is also monitored by the National Institute of Health Office for Protection from Research Risk and the U.S. Department of Agriculture. All animals were provided food and water ad libitum. Animals were euthanized under general anesthesia (overdose of pentobarbital) at the termination of the study. This method is consistent with the recommendation by the Panel of Euthanasia of the American Veterinary Medical Association.

Mice in each strain were separated into the Control and DMBA/TPA treated groups (n=3 per group) and hair on the back was shaved. Two days later, for the DMBA/TPA group, a single dose of 100 nmol DMBA was painted on the backs of mice. After two weeks, 4 μg of TPA was applied to the same area for 24 h. The control group received DMSO treatment at each time. Mice were then euthanized, skin tissues were removed, and skin epidermal cells were collected as we described previously (32). The skin tissues from one group of the C57BL/6 mice were used for oxygen consumption assays and the remaining groups were used for the biochemical assays.

2.3 Measurements of oxygen consumption of JB6 cells and skin cells stripped from mouse skin tissues

JB6P+ cells (2×10⁶/ml) resuspended in growth medium or stripped skin cells resuspended in mitochondrial isolation buffer (0.225 M mannitol, 0.075 M sucrose, 1
mM EGTA, pH 7.4) were suspended in a thermostated closed vessel at 37°C. Oxygen consumption was measured polarographically using a Clark–type O₂ electrode (Yellow Spring Instruments, Yellow Springs, OH, USA). The rate of mitochondrial O₂ consumption was determined as the cyanide-sensitive rate after addition of antimycin A to the final concentration of 1 μM (33). The percentages of the oxygen consumption of each treatment vs. that of the vehicle control were collected from each experiment and the data from at least three experiments were combined and plotted.

2.4 PKM2 siRNA transfection

Cells were seeded at 2 x 10⁵ cells per well in six-well tissue culture plates. The cells were incubated at 37 °C in a 5% CO₂ incubator until they became 70-80% confluent. For each transfection, 2 μl of the PKM2 siRNA duplex (sc-62821, Santa Cruz Biotechnology, Santa Cruz, CA) were diluted into 100 μl of siRNA transfection medium (sc-36868, Santa Cruz Biotechnology) and labeled as Solution A. Solution B consisted of 2 μl of transfection reagent (sc-29528, Santa Cruz Biotechnology) diluted into 100 μl of siRNA transfection medium. Solution A and B were mixed gently and incubated for 30 min at room temperature. The cells were washed once with 2 ml of siRNA transfection medium. For each transfection, 0.8 ml of siRNA transfection medium were added to each tube containing the solution A/B mixture, mixed and directly added to the washed cells. Cells were incubated for 5-7 hours at 37 °C in a 5% CO₂ incubator. Immediately following, 2 ml of 1 x normal growth medium was added to the cells containing the transfection mixture. The cells were incubated for an additional 24 h and assayed via Western blot analysis. Fluorescein conjugated control siRNA (sc-36869, Santa Cruz Biotechnology) was used to monitor transfection efficiency.
2.5 Preparation of Whole Cell Lysate

Collected skin cells were suspended in 250 μl of PBS containing a proteinase inhibitor cocktail (Calbiochem, La Jolla, CA). Cells were sonicated on ice for two strokes (10 sec per stroke) using a Fisher Sonic Dismembrator (Model 100, Scale 4). After incubating on ice for 30 min, cell lysate was centrifuged at 18,000 x g for 20 min, and the supernatant was collected and designated as Whole Cell Lysate.

2.6 Western blot analysis

Antibodies against PKM2 (ab38237) and PKM (ab6191) were purchased from Abcam (Cambridge, MA). An antibody against PKM1 (AP7476b) was purchased from Abgent (San Diego, CA). Antibodies against glyceraldehyde 3-phosphate dehydrogenase (GAPDH, sc-32233) and succinate dehydrogenase complex subunit B (SDHB, sc-25851) were purchased from Santa Cruz Biotechnology.

2.7 PKM activity assay

PKM activities were analyzed using the lactate dehydrogenase (LDH) coupled assay as described previously (34). The standard assay mixture contains in a final volume of 400 μl: 10 mM Tris-acetate, pH 7.5; 10 mM MgCl₂; 50 mM KCl; 2 mM ADP; 10 mM phosphoenolpyruvate; 4.4 units of LDH; and 0.12 mM DADH. The reaction was started by adding 5 μl of Whole Cell Lysate and 4 μl of 5′-AMP (1 mM) and the decrease in absorbance at 340 nm (NADH) was recorded for 1 min. 5′-AMP brings PKM2 to its maximal velocity. The baseline was measured without the addition of phosphoenolpyruvate and 5′-AMP. For measuring PKM1 activity, 5 μl of Whole cell Lysate and 4 μl of fructose 1,6-bisphosphate (1mM) were added to the assay mixture and
the decrease in absorbance at 340 nm (NADH) was recorded for 1 min. Fructose 1,6-bisphosphate brings PKM1 to its peak velocity.

2.8 Determination of pyruvate, malate, and succinate by HPLC

The Shimadzu HPLC system consisted of a binary, high-pressure gradient solvent delivery pump (model LC 20AB), an autosampler equipped with a cooling sample device (model SIL-20AC HT), a UV-visible absorbance detector (model SPD-20A) and data processing software (LCsolution Version 1.23). The tray compartment containing sample vials was cooled at 4 °C. Separation of pyruvic acid, malic acid and succinic acid was performed with a XDB-C18 column (4.6×250 mm, 80Å) and a Guard Column (4.6×12.5 mm, 80Å). The mobile phase was 10 mM phosphate buffer (pH 2.4, adjusted with phosphoric acid) containing 4% methanol (0.0-15.0 min), followed sequentially by a linear gradient of 4% to 80% methanol (15.0-16.0 min), 80% methanol (16.0-17.0 min), a linear gradient of 80% to 4% methanol (17.0-18.0 min) and 4% methanol (18.0-20.0 min). A constant flow rate of 0.5 mL/min was applied. The detection was monitored at 215 nm wavelength and the run time was 20 min. Whole Cell Lysate was prepared from the stripped skin cells isolated from the C57BL/6 mice. It was then adjusted to 0.5 µg/µl in the same volume, and passed through 10 kD molecular weight cut-off spin columns. The elutes were collected for HPLC analysis (retention time: pyruvate [6.176 min]; malate [6.759 min]; and succinate [14.055 min]).

2.9 Anchorage-independent growth assay in soft agar

Soft agar-based cell transformation assay was carried out in six-well plates. The bottom agar was made using 1.25% agar, 2 x EMEM medium, 10% FBS, PBS, glutamine, and penicillin and was incubated in a 50 °C water bath for 15 min. The mixture was then
divided and treated with various treatments. In each well, 3.5 mL of the agar mix was added and allowed to harden for 30 min. The top agar mix contained 0.33% agar and 2 x 10^5 cells. The cell treatments were added at 2 x concentration to the top agar and equally mixed with 2 x 10^5 cells resulting in a final concentration of 0.33% agar for the top layer. Each well received 1 ml of the top agar mix containing cells. The agar was allowed to solidify and incubated in a 37 °C incubator under 5% CO₂ for 7 d and stained with Neutral Red for 24 h.

2.10 Statistical analysis

All of the studies have been repeated for at least three times. Student’s t-test was used for two-group comparison, and one-way ANOVA followed by Newman-Keuls post-test was used for multi-group comparisons. Data were reported as mean ± standard error (S.E.M.). p<0.05 was considered significant.
RESULTS

Mitochondrial respiration substrates suppressed transformation of JB6 P+ cells induced by the tumor promoter TPA.

To determine how enhancing mitochondrial respiration effects skin cell transformation, we used two sets of respiration substrates, malate/pyruvate and succinate, both are often used to drive mitochondrial respiration. JB6 P+ cells were utilized because of their ability to transform upon treatment with the tumor promoter TPA. We treated JB6 P+ cells with malate/pyruvate or succinate, both at a 1:400 dilution. Concurrently, the cells were treated with 5 nM TPA and utilized in the soft agar assay. As shown in Figure 1A, we observed a significant decrease in the number of colonies in the presence of malate/pyruvate after TPA treatment, which complementarily functions to transport pyruvate back to the mitochondria, while the number of colonies in the DMSO and malate/pyruvate controls stayed at lower levels. The addition of this mitochondrial substrate thus demonstrated its ability to interfere with tumor promotion. Succinate, the resulting product of the conversion of succinyl-CoA by succinyl-CoA synthetase, produced similar results as seen with malate/pyruvate, the number of transformed colonies also declined (Fig. 1B). Thus it seems that enhancing mitochondrial respiration can prevent the transformation of JB6 P+ cells.

PKM2 was upregulated upon TPA treatment, which was suppressed by mitochondrial respiration substrates.

Notably the aforementioned experiment demonstrates the effect of increased respiration substrates on tumorigenesis promoted by TPA. Herein, to examine the specific action of how these respiration substrates regulate tumor promotion, we studied PKM2 expression.
and its activity in tumorigenesis in JB6 P+ cells. Figure 2 shows that TPA (24 h treatment) only induced the expression of PKM2, not the whole PKM, in JB6 P+ cells. However, in the presence of the respiration substrates malate/pyruvate and succinate, the increased levels of PKM2 expression were reduced. These respiration substrates alone had no obvious effect on the expression of PKM2 or PKM. A similar trend was also observed with the analysis of PKM2 activities using a lactate dehydrogenase (LDH) coupled assay in the presence of respiration substrates. We detected a reduction in the levels of PKM2 activity when malate/pyruvate was present in conjunction with TPA, as compared to the level of activity of PKM2 upon treatment with TPA alone (Fig. 2B, left panel). Similarly, the increases in PKM2 activity upon TPA treatment were also suppressed in the presence of succinate (Fig. 2B, right panel). To reveal the effects of these treatments on mitochondrial respiration, the level of oxygen consumption of the intact cells after each treatment was measured. As shown in Figure 2C, TPA decreased mitochondrial respiration by approximately 30%, and both sets of respiration substrates suppressed this decrease. These novel results demonstrate that in the presence of respiration substrates PKM2 protein expression as well as activity are repressed.

**PKM2 was upregulated in mouse skin epidermal tissues during the early stage of skin carcinogenesis.**

To complement the above experiment and further delineate the role of PKM2 in early carcinogenesis, we treated mouse skin with DMBA and TPA and isolated skin cells. Figure 3A shows that in C57BL/6 mice, the expression levels of PKM2 were increased, whereas that of PKM1 were decreased in skin epidermal tissues treated with DMBA/TPA compared to the vehicle control and a constant expression of the PKM protein (Fig. 3A,
The changes in the expression levels of PKM2 and PKM1 were correlated with the changes in their enzymatic activities (Fig. 3A, right panel). This outcome of increased PKM2 activity/decreased PKM1 activity displays the possibility of an important role of the PKM1/PKM2 switch in early carcinogenesis. We have repeated the studies using DBA/2 mice, which are relatively sensitive to skin carcinogenesis in comparison to C57BL/6 mice. As shown in Figure 3B, a similar magnitude of this metabolic shift was observed.

To detect if mitochondrial respiration is also affected, oxygen consumption of the intact skin cells was measured. Indeed, as shown in Figure 3C (left panel), the levels of mitochondrial respiration were reduced by approximately 30% in the DMBA/TPA treated skin cells. The levels of the respiration substrates in the skin tissue homogenate were then determined using the reverse phase HPLC method. As shown in Figure 3C (right panel), the concentrations of pyruvate, malate, and succinate remained at similar levels after DMBA/TPA treatment.

**PKM2 was upregulated only in promotable JB6 P+ cells upon TPA treatment, not in non-promotable JB6 P- cells.**

After examining the changes of PKM2 in tumor promotion in TPA-induced early carcinogenesis models, we wanted to ensure that our results were consistent only with cell transformation and not present in non-promotable skin cells. As shown in Figure 4A, the expression levels of PKM2 at 1 h and 24 h post TPA treatment were compared between promotable JB6 P+ and non-promotable JB6 P- cells. Both promotable (P+) and non-promotable (P-) cells displayed low levels of PKM2 expression at the 1 h time point. However, the expression in the promotable cells was induced after 24 h substantially...
while expression stayed low and constant in the non-promotable P- cells. In comparing the relative activity of PKM2 in each cell type, a significant increase in PKM2 activity was only revealed in the promotable line, consistent with the previous results. These results show that PKM2 function is important distinctively for TPA-induced skin cell transformation.

**Knockdown of PKM2 suppressed TPA-induced skin cell transformation.**

Given the strong correlation between PKM2 and TPA induced skin cell transformation, we further examined whether the increase of PKM2 was necessary for cellular transformation. JB6 P+ cells were transfected with siRNA to PKM2 and Whole Cell Lysate was prepared. Fig. 5A shows the effectiveness of the siRNA transfection. Subsequently following the observation of successful knockdown, TPA-induced skin cell transformation was measured using the soft agar assay with PKM2 knockdown cells (Fig. 5B). Our results demonstrated a significant decrease in transformed colonies among PKM2 knockdown cells, similar to the effect of the respiration substrates, malate/pyruvate and succinate. These results reiterate our previous experimental conclusions and strengthen the evidence that PKM2 is important in early carcinogenesis.

**PKM2 activation was suppressed by overexpression of MnSOD.**

Our previous studies have shown that manganese superoxide dismutase is highly expressed and oxidative stress remains at lower levels in non-promotable JB6 P- cells compared with promotable P+ cells (35). To study whether oxidative stress generated by tumor promoters can activate PKM2, MnSOD transgenic mice and their non-transgenic littermates were treated with DMBA and TPA and the mouse skin epidermal tissues were collected. As shown in Figure 6, DMBA/TPA induced both the expression and activity of...
PKM2 in the non-transgenic mice. These increases were clearly reduced in the MnSOD transgenic mice, suggesting antioxidant enzymes, especially MnSOD, can modulate metabolism via inhibiting PKM2 activation.
DISCUSSION

As previously observed in the Warburg effect, cancer cells develop an appetite for glucose as their source of energy production and therefore, mitochondrial respiration is often compromised. In the case of skin tumorigenesis, previous studies revealed decreased mitochondrial complex activities and membrane potential during early skin tumorigenesis (36, 37). In addition, uncoupling mitochondrial electron transportation from ATP synthesis has been suggested to function as a tumor promoting event (37). However, the cause of cancer metabolism is not clear until the recent discoveries of “onco-metabolic enzymes” (38).

The identification of the alternative isozyme of PKM, PKM2, that is reliably present in common cancers suggests that the transition to decreased dependence of cells on oxidative phosphorylation may contribute to early carcinogenesis as the loss of tissue specific PK-M1 and PK-L isozymes transitions to the expression of PKM2 (39). The PKM1/M2 isoforms are generated through alternative splicing which is controlled by heterogeneous nuclear ribonucleoprotein (hnRNP) family members. Overexpression of the three hnRNP proteins have been observed in cancer cells which are mediated by proliferation-associated transcription factors, such as c-Myc (10). In addition, redox signaling may also play a role in regulating PKM2 activation. As shown in Figure 4, PKM2 is only activated in promotable JB6 P+ cells, not in non-promotable P- cells. Our previous studies have demonstrated that MnSOD is higher and TPA-induced oxidative stress is lower in P- cells than that in P+ cells (35).

Further delineating this inherent ability of cancer formation, the replacement of PKM2 with PKM1 reduces the capacity of human tumor cells lines to develop into a
tumor, allowing for the notion that by a change in the splicing of pyruvate kinase, tumorigenesis can be induced through shifting cellular metabolism to aerobic glycolysis (40). Even though PKM2-expressing cells rely on the less efficient glycolytic generation of ATP, ATP levels in PKM1- and PKM2-expressing cells are the same (41). Either resulting from alternative fuel sources from lipids or amino acids or escalating the rate at which glycolysis proceeds may explain the ability of PKM2-expressing cells to produce sufficient ATP levels (42, 43). Nevertheless, the advantages observed in PKM2-expressing tumors and the selective pressure for PKM2 expression in tumors for a propensity to grow may be because of better sustainability under hypoxic conditions resulting from a decreased need for oxidative metabolism. Therefore, aerobic glycolysis resulting from PKM2 mediation, may waste glucose consumption, but could provide many advantages for cancer cells.

To mediate isoform M2, it needs to be allosterically activated by D-fructose 1,6-bisphosphate (FBP) which ultimately regulates PKM2 tetrameric-dimeric oscillation (19, 34). The dimeric form of M2-PK leads to a decrease in the ATP/ADP ratio and an upregulation of FBP levels (26). On the other hand, the activity of M1-type PK is inhibited by ATP, but not by FBP (44). These alterations and mediation mechanisms of PKM2 raise notice as to how the Tumor M2-PK rises in cells that produce more lactate and consume less oxygen than cells expressing PKM1, which ultimately is advantageous for rapid growth in cancer cells (45). Other metabolic sources aside from FBP, such as serine, can activate M2-PK where as alanine, proline and fatty acids inhibit PKM2 (46-48). Our current study suggests that mitochondrial respiration substrates malate/pyruvate and succinate may also confer PKM2 inhibition and in turn reduce TPA induced skin cell
transformation. The identification of various mediators of PKM2 and the conclusion that its expression and activity have a significant effect on tumorigenesis opens up the possibility to exploit PKM2 as a target for cancer detection, prevention, and control. Although Tumor M2-PK is not an organ specific marker, it is a strong marker of metastasis (16). Tumor M2-PK is released into the blood and stool of tumor patients and thus could be utilized for detection as it plays a role in early carcinogenesis as we have shown (9). Research has already begun to make progress in developing small molecule inhibitors of PKM2 (49).

In summary, our studies revealed a number of interesting findings. First, the results help define at what stage of cancer development this PKM1-to-PKM2 shift occurs. As observed in mouse skin tissues (Figure 3), PKM2 is upregulated and PKM1 is downregulated within 24 h after the first tumor promoter TPA treatment, suggesting this metabolic shift is an early event during skin carcinogenesis. Second, this shift is accompanied by a decrease in mitochondrial respiration, indicating that downregulation of mitochondrial respiration occurs early in carcinogenesis. This decrease is confirmed by our previous studies that tumor promoters cause decreases in mitochondrial membrane potential and complex activities. Thus, by disrupting PKM2’s early activation, the results we have obtained, along with the extensive work of others, may provide help in developing diagnostic, preventative and anti-cancer therapies.
ACKNOWLEDGEMENT

The authors wish to thank Drs. Tak Yee Aw and Magdalena L. Circu in the Department of Molecular and Cellular Physiology at LSUHSC-Shreveport for their assistance in the determination of oxygen consumption.
REFERENCES


FIGURE LEGENDS

Figure 1. Mitochondrial respiration substrates suppressed TPA-induced skin cell transformation. 2 x 10^5 JB6 P+ cells were suspended in soft agar which was supplemented with the vehicle control (DMSO), tumor promoter TPA (5 nM), mitochondrial respiration substrates, or the combination of the two, and incubated for 7 days. The numbers of colonies were counted (n=3 per treatment group, three separate experiments were performed, and a representative result was shown). (A) Malate and pyruvate were used as the mitochondrial respiration substrate. M/P, malate plus pyruvate (37.5 μM and 75 μM, respectively). (B) Succinate was used as the mitochondrial respiration substrate. S, succinate (75 μM). *, p<0.05 compared with the DMSO group; #, p<0.05 compared with the TPA group.

Figure 2. Mitochondrial respiration substrates suppressed TPA-induced PKM2 activation. JB6 P+ cells were pretreated with malate plus pyruvate (37.5 μM and 75 μM, respectively) or succinate (75 μM) for 30 min following by TPA treatment (100 nM) for 24 h. Whole cell lysate was prepared and used for Western blot analysis (A, GAPDH served as the loading control) and PKM2 activity assays (B). The levels of oxygen consumption were measured as an indicator of mitochondrial respiration (C). M/P, malate plus pyruvate; S, succinate; Control, DMSO (0.01%). *, p<0.05 compared with the DMSO group; #, p<0.05 compared with the TPA group.

Figure 3. PKM2 was also activated during early skin carcinogenesis. Mouse skin epidermal cells were collected and Whole Cell Lysate was used for Western blot analysis and PKM2 activity assay from C57BL/6 (A) and DBA/2 (B) mice. In a separate study, skin cells were stripped after DMBA/TPA or vehicle treatment and the levels of
mitochondrial consumption were measured (C). Whole cell lysate was prepared and the concentrations of pyruvate, malate and succinate were determined by reverse phase HPLC. Ctrl, control (DMSO) treatment group. *, p<0.05 compared with the control group.

**Figure 4. PKM2 was activated only in promotable JB6 P+ cells.** JB6 P+ and P- cells were treated with TPA (100 nM) for 1 or 24 h, and Whole Cell Lysate was prepared for the experiments. (A) Western blot analysis of PKM2. (B) PKM2 activity assays. Ctrl, control (0.01% DMSO for 24 h). *, p<0.05 compared with its own control group.

**Figure 5. Knockdown of PKM2 suppressed TPA-induced skin cell transformation.** JB6 P+ cells were used for the experiments. (A) The expression levels of PKM2 were detected in siRNA-transfected cells using Western blot analysis. SDHB served as the loading control. (B) Soft agar colony formation assay was performed using siRNA-transfected cells. Ctrl/D: control siRNA plus DMSO treatment; PKM2/D, PKM2 siRNA plus DMSO treatment; Ctrl/T, control siRNA plus TPA (5 nM) treatment; PKM2/T, PKM2 siRNA plus TPA treatment. *, p<0.05 compared with the Control siRNA/DMSO group; #, p<0.05 compared with the control siRNA/TPA group.

**Figure 6. PKM2 activation was suppressed by overexpression of MnSOD during early skin carcinogenesis.** Mouse skin epidermal cells were collected and Whole Cell Lysate was used for Western blot analysis (A) and PKM2 activity assay (B). nTg, skin epidermal samples from non-transgenic (wild-type) mice; TgH, skin epidermal samples from MnSOD transgenic mice. Ctrl, control (DMSO) treatment group. *, p<0.05 compared with the control group.
Figure 1

A

B

Number of Colonies

DMSO  TPA  M/P  M/P+TPA

DMSO  TPA  S  S+TPA
**Figure 2**

A. Protein expression of PKM2 and PKM under different conditions: Control, TPA, M/P, M/P + TPA.

B. Relative levels of PKM2 activity under different conditions: Control, TPA, M/P, M/P + TPA.

C. Relative levels of mitochondrial respiration under different conditions: Control, TPA, M/P, M/P + TPA.
Figure 3
Figure 4
Figure 5
### Figure 6

#### A

<table>
<thead>
<tr>
<th></th>
<th>nTg</th>
<th>TgH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl DMBA/TPA</td>
<td>Ctrl DMBA/TPA</td>
<td></td>
</tr>
</tbody>
</table>

50 kDa - PKM2

50 kDa - PKM

37 kDa - GAPDH

#### B

**Relative levels of PKM2 activity**

<table>
<thead>
<tr>
<th></th>
<th>nTg</th>
<th>TgH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl DMBA/TPA</td>
<td>Ctrl DMBA/TPA</td>
<td></td>
</tr>
</tbody>
</table>

* indicates a significant difference.
Cancer Prevention Research

Enhancing Mitochondrial Respiration Suppresses Tumor Promoter TPA Induced PKM2 Expression and Cell Transformation in Skin Epidermal JB6 Cells

Jennifer A Wittwer, Delira Robbins, Fei Wang, et al.

Cancer Prev Res Published OnlineFirst June 14, 2011.