Organ specificity of the bladder carcinogen 4-aminobiphenyl in inducing DNA damage and mutation in mice

Running title: 4-ABP-DNA adducts & mutations

Jae-In Yoon, Sang-In Kim, Stella Tommasi, and Ahmad Besaratinia *

Department of Cancer Biology, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA

* Corresponding Author: Ahmad Besaratinia; Tel: (626) 359 8111 ext: 65918; Fax: (626) 358 7703; E-mail: ania@coh.org

Keywords: 4-ABP, aromatic amines, bladder cancer, DNA adducts, mutations

Financial support: This study was supported by a grant from the American Cancer Society (RSG-11-083-01-CNE) to A.B. All the authors declare that they have no conflict of interest.

Total word count: 4,828 (text); 250 (Abstract); Total number of figures: 5; Total number of references: 50; Supplementary materials: 3 table (Table S1-3) and 1 figure (Figure S1).
ABSTRACT

Aromatic amines are a widespread class of environmental contaminants present in various occupational settings and tobacco smoke. Exposure to aromatic amines is a major risk factor for bladder cancer development. The etiologic involvement of aromatic amines in the genesis of bladder cancer is attributable to their ability to form DNA-adducts, which upon eluding repair and causing mispairing during replication, may initiate mutagenesis. We have investigated the induction of DNA-adducts in relation to mutagenesis in bladder and various non-target organs of transgenic Big Blue® mice treated weekly (i.p.) with a representative aromatic-amine compound, 4-aminobiphenyl (4-ABP), for six weeks, followed by a six-week recovery period. We demonstrate an organ-specificity of 4-ABP in inducing repair-resistant DNA-adducts in bladder, kidney and liver of carcinogen-treated animals, which accords with the bioactivation pathway of this chemical in the respective organs. In confirmation, we show a predominant and sustained mutagenic effect of 4-ABP in bladder, and much weaker but significant mutagenicity of 4-ABP in the kidney and liver of carcinogen-treated mice, as reflected by the elevation of background cII mutant frequency in the respective organs. The spectrum of mutations produced in bladder of 4-ABP-treated mice matches the known mutagenic properties of 4-ABP-DNA-adducts, as verified by the preponderance of induced mutations occurring at G:C basepairs (82.9%), with the vast majority being G:C→T:A transversions (47.1%). Our data support a possible etiologic role of 4-ABP in bladder carcinogenesis, and provide a mechanistic view on how DNA-adduct-driven mutagenesis, specifically targeted to bladder urothelium, may account for organ-specific tumorigenicity of this chemical.
INTRODUCTION

Aromatic amines and bladder cancer have been a primary focus of research since the early years of chemical carcinogenesis (1). At around the turn of the 19th century, cases of urinary bladder cancer were noted in German dye workers who were occupationally exposed to aniline and its derivatives (2, 3). Subsequent epidemiologic studies confirmed an association between exposure to chemicals of the family of aromatic amines, including 2-naphthylamine, benzdine, and 4-aminobiphenyl (4-ABP), and the incidence of urinary bladder cancer (4). These observational findings were substantiated by animal experiments in which exposure of dogs, rabbits, hamster, rats, and mice to prototype aromatic amines caused urinary bladder tumor formation (5-7). Since the reports of epidemiologic and experimental links between exposure to aromatic amines and development of urinary bladder cancer, national and international regulatory efforts have been made to minimize occupational exposure to aromatic amines (8). Today, however, exposure to aromatic amines still occurs in a wide range of industries, including rubber, cable, and textile manufacturing, aluminum transformation, and gas, coal, pesticide, and cosmetics productions (9). In addition, non-occupational sources of exposure to aromatic amines also exist, with tobacco smoke being the most prominent source. Both mainstream and sidestream tobacco smoke contain nanogram quantities of carcinogenic aromatic amines, such as Ortho-toluidine, 2-naphthylamine, and 4-ABP, e.g., mainstream smoke from a non-filtered cigarette contains 160, 1.7, and 4.6 nanograms of the respective chemicals (10, 11). The elevated risk of bladder cancer in smokers is ascribed to their exposure to aromatic amines, with smokers of black (air-cured) tobacco being at higher risk than smokers of blond (flue-cured) tobacco (12-14). The latter
finding accords with the richer content of aromatic amines in black tobacco products than blond tobacco products (10).

As a representative compound of the class of aromatic amines, 4-ABP has been extensively studied to elucidate the underlying mechanism of bladder carcinogenesis (1). Thus far, a genotoxic mode of action based on the ability of 4-ABP to induce DNA damage and mutation has been established (15, 16). In vivo, 4-ABP requires metabolic activation to exert its genotoxic effects (1). The biotransformation of 4-ABP consists of N-oxidation catalyzed by the cytochrome P450 enzymes, primarily CYP1A2 (17), or N-methylation or peroxidation, although to much lesser extent (18, 19). The resulting hydroxyarylamine may undergo detoxification through N-acetylation, or stay intact or in conjugation with acetate, sulfate or glucuronate (20-22). The acetate and sulfate O-conjugates can readily interact with DNA or proteins, whereas the glucuronate O-conjugate can circulate in the body and reach the urinary tract, wherein it undergoes hydrolysis at the acidic pH of urine (21, 22). The resultant electrophilic nitrenium cation can bind directly the DNA of the urothelial cells and form covalent adducts, predominantly at the $C8$ position of guanine, N-(deoxyguanosine-8-yl)-4-ABP (4-ABP-DNA adduct) (16, 23, 24). It is widely believed that persistent (repair-resistant) 4-ABP-DNA adducts and similar adducts from the family of carcinogenic aromatic amines are etiologically involved in the genesis of human bladder cancer (1, 15, 16). To date, however, no experimental study has investigated the formation and kinetics of repair of 4-ABP-DNA adducts in relation to mutagenesis in target and non-target organs of 4-ABP-induced carcinogenesis in vivo.

In the present study, we have comprehensively investigated the DNA adduction and mutagenic properties of 4-ABP in vivo in transgenic Big Blue® mice, an extensively validated
model for the analysis of experimentally induced DNA damage and mutation (25). The genome of these transgenic animals contains multiple copies of a chromosomally integrated λLIZ shuttle vector, which carries two mutational reporter genes, including the cII and lacI that can be used for simultaneous analysis of DNA damage and mutation in any organ of interest (26). Here, we have investigated the induction of DNA adducts in relation to mutagenesis in bladder and various non-target organs of transgenic Big Blue® mice chronically exposed to 4-ABP. More specifically, we have determined the formation and kinetics of repair of 4-ABP-DNA adducts in relation to cII mutagenesis in target and non-target organs of mice treated weekly with intraperitoneal (i.p.) injections of 4-ABP for six weeks, followed by a six-week recovery period. We have used an immunodot blot assay with a specific antibody raised against the 4-ABP-DNA adduct (27) to evaluate DNA damage and repair in bladder and various non-target organs of 4-ABP-treated mice. In addition, we have used the cII mutation detection assay (28) to assess the organ-specificity of cII mutations, and DNA sequencing analysis to establish the type and frequency distribution of induced mutations in 4-ABP-treated animals.

MATERIALS AND METHODS

Animals. Twenty male Big Blue® mice (6-8 weeks old) on a C57BL/6 genetic background (Stratagene, La Jolla, CA) were randomly divided into two groups of (1) Experimental (4-ABP exposure; $n = 10$) and (2) Control (sham-exposure; $n = 10$), each subdividing into two categories ($n = 5$), including (I) six weeks exposure, and (II) six weeks exposure + six weeks recovery. The mice assigned to each experimental or control group ($n = 5$) were kept in polypropylene cages in groups of 2-3 animals per cage, and housed in an air-conditioned
animal room with ambient temperature of 21 ± 1°C and relative humidity of 55% with 12-hours light/dark cycle. The mice had access to food (PicoLab Rodent Diet 20, PMI Nutrition International, LLC.; Brentwood, MO) and water *ad libitum* throughout the study period. All experiments were conducted in the City of Hope Animal Resources Center and approved by the Institutional Animal Care and Use Committee in accordance with the recommendations of the National Institutes of Health provided in the Guide for the Care and Use of Laboratory Animals.

The experimental mice received *i.p.* injections of 4-ABP once per week for a duration of six weeks using the following regimen: 1st week: 25 mg/kg bw; 2nd week: 50 mg/kg bw; 3rd week: 75 mg/kg bw; and 4th – 6th weeks: 100 mg/kg bw of 4-ABP. The specified doses of 4-ABP were prepared fresh on the day of administration by dissolving the chemical in dimethylsulfoxide (DMSO) (4-ABP and DMSO: Sigma-Aldrich Inc.; Saint Louis, MO). The incremental doses of 4-ABP were delivered to the mice by *i.p.* injection (100 μl) on the lower right or left quadrant in alternate weeks. Control mice received similar injections of solvent DMSO using the same dosing schedule as described for 4-ABP. All mice were monitored closely for development of any unusual symptoms during both the 4-ABP/sham exposure and recovery periods. At the end of all experiments, the 4-ABP-treated and control mice were euthanized by CO₂ asphyxiation, and bladder and various non-target organs, including the lung, stomach, kidney, and liver were harvested and preserved at -80°C until further analysis.

Genomic DNA isolation. Genomic DNA from various organs of 4-ABP-treated and control mice was isolated using a standard phenol and chloroform extraction and ethanol precipitation protocol (29). The DNA was dissolved in TE buffer (10 mM Tris-HCl, 1 mM
EDTA, pH 7.5), and kept at –80°C until further analysis.
Immunodot blot assay. To determine the formation and repair of 4-ABP-DNA adducts, genomic DNA of carcinogen-treated mice vs control were subjected to immunodot blot assay using the mouse monoclonal 4C11 antibody (kindly provided by Dr. Regina Santella of Columbia University). The 4C11 antibody is highly specific for the 4-ABP-DNA adduct and, at the highest concentration tested, does not recognize the DNA adducts of several other aromatic amines, including 1-aminopyrene, 8-nitro-1-aminopyrene, and 6-nitro-1-aminopyrene (27). The immunodot blot assay was performed as described earlier with some modifications (30). Briefly, heat-denatured DNA (0.5 µg) was dot-blotted onto a nitrocellulose membrane using the Convertible Filtration Manifold System (Life Technologies, Gaithersburg, MD). The membrane was laid over an absorbent paper pre-soaked with 0.4 N NaOH for 20 minutes at room temperature. Subsequently, the membrane was blocked by incubating in phosphate-buffered saline plus 0.2% Tween 20 (PBS-T) containing 5% non-fat milk (NFM) at 4°C overnight. After multiple washes with PBS-T, the membrane was incubated with the 4C11 antibody for 2 hours at room temperature (dilution: 1:150 in PBS-T plus NFM). The membrane was washed thoroughly with PBS-T and further incubated with an anti-mouse horse-radish peroxidase conjugated immunoglobulin (Promega, Madison, WI) for 1 hour at room temperature (dilution: 1:10,000 in PBS-T plus NFM). To reveal peroxidase activity, the membrane was stained with the Enhanced Chemiluminescence Detection System (Amersham Biosciences UK limited, Buckinghamshire, England) according to the manufacturer’s instructions. The stained membrane was exposed to X-ray film, and the relative intensity of luminescence was determined using the Bio-Rad Imaging Equipment applying Quantity One image analyzer (Bio-Rad Laboratories, Life Science Group, Hercules, CA). Results are expressed as...
‘Relative luminescence intensity’, which is representative of the level of 4-ABP-DNA adducts.

cII Mutant frequency and mutation spectrum analyses. Genomic DNA of transgenic Big Blue® mice contains multiple copies of the coliphage λLIZ shuttle vector, which is integrated into the murine chromosome 4 in a head-to-tail configuration, while harboring two mutational target genes, the *cII* and *lacI* (26). The *cII* mutagenesis assay is based on the recovery of the λLIZ shuttle vector from the genomic DNA of transgenic animals followed by phenotypic expression of the *cII* mutants using a commercially available bacterial expression system (Stratagene) (28). The λLIZ shuttle vector is rescued enzymatically from the mouse genomic DNA and packaged into viable phage particles, which are then introduced into an indicator host *Escherichia coli* (*E. coli*). The infective λLIZ-bearing phages can multiply either lytically or lysogenically in the host *E. coli* depending on the status of *cII* transcription (31). The *cII* protein is essential for the activation of *cl* repressor and lambda integrase, both of which being necessary for lysogenization (28, 31). The *E. coli* indicators that carry phages with a mutated *cII* undergo lysis, thereby forming visible plaques on a special agar lawn (28). The λLIZ shuttle vector, however, harbors a *cl857* temperature sensitive (*ts*) mutation that makes the *cl*(*ts*) protein labile at temperatures exceeding 32°C (28). Thus, all vector-bearing phages, irrespective of the status of *cII* mutation, multiply lytically in the host *E. coli* at incubating temperatures greater than 32°C (26, 28). This temperature sensitivity is the basis for the *cII* selection system in which phenotypic expression of the *cII* mutants is achieved under selective incubation condition, *i.e.*, 24°C (28). Under non-selective incubation condition, *i.e.*, 37°C, however, both wild type and
mutant cII are expressed (28). The ratio of plaques formed under the selective condition to those arisen under the non-selective condition is conventionally referred to as the “cII mutant frequency”, which is representative of the frequency of induced/spontaneous mutations in the cII transgene (25). The phenotypically expressed cII mutants can be further analyzed by DNA sequencing to establish the type and distribution of mutations (mutation spectrum) in the cII transgene (25).

For mutant frequency determination, the λLIZ shuttle vectors containing the cII transgene were recovered from the genomic DNA of 4-ABP-treated and control mice, and packaged into viable phage particles using the Transpack Packaging Extract kit (Stratagene). After pre-adsorption of the phages to G1250 E. coli, the bacterial culture was grown on TB1 agar plates. To select for cII mutants, the plates were incubated at 24°C for 48 hours. Alternatively, the plates were incubated under non-selective condition, i.e., 37°C overnight, to express both the wild type and mutant cII. Verification of all putative cII mutants was achieved by re-plating under the selective condition. To determine a statistically valid mutation frequency, minimums of 3×10^5 rescued phages were screened in each experimental or control group (25). For mutation spectrometry, all verified mutant plaques were amplified by polymerase chain reaction (PCR) using the “λ Select-cII sequencing primers” according to the manufacturer’s recommended protocol (Stratagene). The purified PCR products were then subjected to direct DNA sequencing using the Big Dye terminator cycle sequencing kit and ABI-3730 DNA Sequencer (ABI Prism, PE Applied BioSystems, Foster City, CA).
Statistical Analysis. Given the small sizes of experimental/control groups and the intergroup variation of data, all results are expressed as medians ± 95% confidence intervals (CIs), which give a better estimation of data distribution. Comparison of all variables between two separate groups was done using the Wilcoxon rank-sum test. The induced mutation spectrum produced by 4-ABP treatment was compared to the spontaneous spectrum of mutation in control (solvent treatment) by the hypergeometric test of Adams and Skopek (32). The frequencies of specific types of mutation (e.g., transitions, transversions, etc.) between two different groups were compared by the chi-square test. All statistical tests were two-sided. Values of $P \leq 0.05$ were considered statistically significant. The S-Plus 7.0 for Windows software (Insightful Corp.; Seattle, WA) was used for all statistical analyses.

RESULTS

Mice survival. All mice from both experimental and control groups tolerated the 4-ABP/sham-exposure regimens well, without exhibiting any sign of stress or discomfort. The survival rate of mice in the experimental and control groups was 100% at the end of both 4-ABP/sham-exposure period and the ensuing recovery time. All mice from both experimental and control groups gained steadily body weight throughout the exposure and recovery periods (data not shown).

4-ABP-DNA adduct analysis. We used an immunodot blot assay to assess the formation and repair of 4-ABP-DNA adducts in bladder, lung, stomach, kidney, and liver of mice chronically treated with 4-ABP (6 weekly doses), before and after a six-week recovery period. Representative immunodot blot assay results for the specified organs in chronically
treated mice pre- and post-recovery periods are shown in Figure 1A. Qualitatively, an intense formation of 4-ABP-DNA adducts was readily detectable in bladder, kidney, and liver of carcinogen-treated mice immediately after treatment and six weeks afterwards; however, no appreciable formation of DNA adducts was discernable in the respective organs in control animals (see, Fig. 1A). Quantitatively, the highest levels of 4-ABP-DNA adducts were detectable in bladder, liver, kidney, in the order of decrease, in chemically treated mice both after the carcinogen-treatment and six-weeks afterwards (see, Fig. 1B). The background levels of 4-ABP-DNA adducts were slightly increased in the stomach and to a much lesser extent in the lung of carcinogen-treated mice immediately after carcinogen treatment.

cII Mutant frequency quantification. We determined the mutant frequencies of the cII transgene in bladder, lung, stomach, kidney, and liver of mice from both experimental and control groups after six weeks of 4-ABP/sham exposure, and an ensuing six-week recovery period. Because the background frequency of cII mutants in each organ in control groups, including (I) six weeks sham exposure; and (II) six weeks sham exposure plus six weeks recovery, did not differ significantly from one another (data not shown), we used the data only from the control group (II) for all comparison purposes. As shown in Figure 2 and Supplementary Table S1, 4-ABP was organ-specifically mutagenic in chronically treated mice, with bladder being the target organ for the most pronounced mutagenic effect. The predominant mutagenicity of 4-ABP to bladder in chronically treated mice was demonstrated by a significant increase in background cII mutant frequency from $2.06 \pm 0.20 \times 10^{-5}$ in bladder of control mice to $18.86 \pm 4.77 \times 10^{-5}$ in bladder of 4-ABP-treated mice ($P = 0.0079$). After six weeks of recovery, the frequency of cII mutants in bladder of 4-ABP-treated mice
still remained significantly elevated relative to controls (17.20 ± 4.88; \(P = 0.0079 \)). The persistent mutagenicity of 4-ABP to bladder of chronically treated mice was further confirmed by the observation that there was no significant difference between the induced cII mutant frequency in bladder of 4-ABP-treated mice before and after six weeks recovery period (\(P = 0.6905 \)) (see, Fig. 2).

Furthermore, there was a slight but statistically significant mutagenic response in liver of 4-ABP-treated mice, as reflected by the elevation of background cII mutant frequency from 2.04 ± 0.56 \(\times 10^{-5} \) to 4.54 ± 1.08 \(\times 10^{-5} \) in this organ in carcinogen-treated animals (\(P = 0.0317 \)). After six weeks of recovery, this mutagenic response was still significant, as indicated by an elevated cII mutant frequency of 4.62 ± 0.98 \(\times 10^{-5} \) (\(P < 0.008 \)). In addition, there was a ‘delayed’ mutagenic response in kidney in 4-ABP-treated mice, which manifested as a significant increase in background cII mutant frequency from 2.59 ± 1.22 \(\times 10^{-5} \) to 6.57 ± 1.94 \(\times 10^{-5} \) (\(P = 0.0465 \)) in the kidney of 4-ABP-treated mice after six weeks of recovery. No mutagenic response was found in the lungs or stomach of 4-ABP-treated mice immediately after treatment or six weeks afterwards (see, Fig. 2).

cII Mutation spectra. We established the spectra of mutations in the cII transgene in carcinogen-treated mice and controls by DNA sequencing of mutants from bladder genomic DNA in 4-ABP-treated mice and controls. We randomly selected 30 mutant plaques derived from the bladder DNA of each mouse from both experimental and control groups (five mice each), and performed DNA sequencing analysis. Detailed information on the type and frequency of mutations in the cII transgene in bladder DNA of 4-ABP-treated mice and controls is shown in Table S2 and Table S3. Distribution of these mutations along the
nucleotide positions of the cII transgene is also outlined in Figure 3 and Supplementary Figure S1. In all cases, calculations were made both with and without the sibling mutations, which are defined as the identical mutations that occur repeatedly at the same nucleotide positions in the same sample from an individual animal, and may or may not be independent events from one another (33). As shown in Table S3, neither the spectrum of mutations produced by 4-ABP nor that of control changed significantly after the exclusion of sibling mutations. Thus, sibling mutations did not differently impact the 4-ABP-induced and control mutation spectra. Comparison of the overall spectrum of 4-ABP-induced mutation and control mutation spectrum revealed that the two mutation spectra were significantly different from one another both before and after the exclusion of sibling mutations ($P < 1e-9$; by Adams and Skopek test). For brevity, all statistical comparisons are made after the exclusion of sibling mutations from hereon; although both mutation databases (sibling mutations included and excluded) are presented throughout.

As shown in Table S2, single base substitutions comprised the vast majority of cII mutations found in bladder DNA of both 4-ABP-treated mice and controls (88.5 vs 78.4%; $P < 0.06$). Of these, mutations occurring at G:C basepairs predominated the 4-ABP-induced mutation spectrum (80.5 vs 56.2% in control; $P < 0.00008$), with G:C→T:A transversions being the most frequent type of mutations (44.0 vs 11.4% in control; $P < 1e-7$) (see, Table S3). The 4-ABP-induced mutations occurring at G:C basepairs or the specific G:C→T:A transversions were not, however, biased towards 5’-CpG-containing sequences (discussed below). Conversely, the control mutation spectrum was characterized by a preponderance of G:C→A:T transition mutations (41.9 vs 23.1% in 4-ABP-induced mutation spectrum; $P = \ldots$).
0.003), which were highly targeted to 5′-CpG dinucleotides (33.3 vs 10.4% in 4-ABP-induced mutation spectrum; \(P = 0.005 \)) (see, Table S3).

To find what specific type(s) of mutation have caused the significant increase in \(cII \) mutant frequency in bladder DNA of 4-ABP-treated mice relative to controls, we computed the absolute mutant frequency of each type of mutation (i.e., transitions, transversions, deletions, and insertions) in the \(cII \) transgene of bladder genomic DNA from both the 4-ABP-treated mice and controls. As shown in Figure 4 and Table S3, the absolute mutant frequencies of \(G:C \rightarrow C:G \) transversions, \(G:C \rightarrow T:A \) transversions, \(G:C \rightarrow A:T \) transitions, \(A:T \rightarrow T:A \) transversions, \(A:T \rightarrow G:C \) transitions, \(A:T \rightarrow C:G \) transversions, deletions, and insertions were all increased, although to different extents, in the \(cII \) transgene of bladder genomic DNA from 4-ABP-treated mice as compared to controls. The percentage contributions of the respective types of mutation to the overall increase in \(cII \) mutant frequency in bladder DNA of 4-ABP-treated mice were 12.8, 47.1, 21.3, 3.2, 5.0, 2.4, 6.9, and 1.2. Thus, mutations occurring at G:C basepairs account for 82.9% of all induced \(cII \) mutations in bladder DNA of 4-ABP-treated mice (see, Fig. 5). Of these, \(G:C \rightarrow T:A \) transversion mutations, which comprise nearly half of all the induced \(cII \) mutations, are the main contributor to the overall increase in the \(cII \) mutant frequency in bladder DNA of 4-ABP-treated mice (see, Fig. 5).

DISCUSSION

Exposure to aromatic amines is a major risk factor for bladder cancer development (1, 9, 14). The etiologic role of aromatic amines in bladder carcinogenesis revolves around their ability to form covalently bound DNA adducts, which upon eluding repair and causing mispairing
during replication, may initiate mutagenesis (15, 16). To date, however, no experimental study has investigated the formation and repair of aromatic amine-DNA adducts in relation to mutagenesis in target and non-target organs of carcinogenesis in vivo. In the present study, we have comprehensively investigated the DNA adduction and mutagenic consequences of exposure to a representative aromatic amine compound, 4-ABP, in bladder and various non-target organs of transgenic Big Blue® mice treated weekly with 4-ABP for six weeks, followed by a six-week recovery period. Our immunodot blot analysis of 4-ABP-DNA adducts in various organs of chronically treated mice before and after the recovery period showed a repair-resistant formation of DNA adducts in bladder, kidney, and liver of carcinogen-treated animals. An intense formation of 4-ABP-DNA adducts was readily detectable in bladder, liver, and kidney of 4-ABP-treated mice immediately after treatment, and six weeks afterwards (see, Figure 1A). The highest levels of 4-ABP-DNA adducts were found in bladder, liver, kidney, in the order of decrease, in chemically treated mice both after the carcinogen-treatment and six-weeks afterwards (see, Fig. 1B). This organ-specificity of 4-ABP DNA adduction accords with its biotransformation inasmuch as reactive metabolites of 4-ABP, which are initially produced in liver, are transported to the urinary tract where they come in contact with kidney and bladder urothelial cells (17, 20-22).

Our mutagenicity analysis confirmed the above organ-specificity of 4-ABP DNA adduction, and provided a mechanistic view on the known tumorigenicity of 4-ABP in mice (34, 35). As shown in Figure 2, there was a predominant mutagenicity of 4-ABP to the bladder of chronically treated mice, which remained sustained after six weeks of recovery. In addition, much weaker but significant mutagenic responses were found in the liver and kidney of 4-ABP treated mice. While the overriding and sustainable mutagenicity of 4-ABP to the
The pronounced persistence of 4-ABP-DNA adducts in bladder relative to liver and kidney (see, Fig. 1B) can partially explain its highest mutagenicity in this organ (i.e., bladder) found in carcinogen-treated mice (Fig. 2). Given the small differences in the levels of 4-
ABP-DNA adducts among these three organs; however, it is also likely that varying cellular proliferation rates, specific for each of these three organs, might be additionally responsible for the different mutagenic responses found in these organs in 4-ABP-treated mice. More specifically, the high proliferation capacity of the bladder urothelial cells may have contributed to the significant mutagenic response found in this organ in 4-ABP-treated animals. In the present study, the mutagenic effect of 4-ABP to liver of chronically treated mice manifested immediately post-treatment, and remained unchanged after an ensuing 6-week recovery period; however, the mutagenic response in the kidney of 4-ABP-treated mice was delayed, and became detectable only after six weeks of recovery (see, Fig. 2). Although the exact mechanism of this delayed mutagenic effect is currently unknown, the slowly proliferating renal cells may require prolonged time for the fixation of mutations.

In one of the early validation studies of transgenic mouse models, Fletcher et al. (41) have reported higher increase in the background LacZ mutant frequency in bladder than in liver of male adult Muta™ Mice treated orally with 4-ABP at a single dose (75 mg/kg bw) or at 10 daily doses (75 mg/kg bw, each). However, Chen et al. have demonstrated that 4-ABP, at a single i.p. dose of 31 mg/kg bw, was mutagenic only to liver of neonatal but not adult Big Blue® mice in both sexes (38). The authors, however, did not investigate 4-ABP mutagenicity to bladder or any other organ of the neonatal or adult mice (38). In our preliminary experiments leading to this investigation, we refined our treatment protocol to achieve: (I) a progressively increasing dose of 4-ABP ≥ 420 mg/kg bw, which is tumorigenic in adult mice (35); and (II) efficient DNA adduction and mutagenesis without causing any adverse health effects. We confirmed that our employed protocol met the above-specified criteria as we
successfully demonstrated 4-ABP-DNA adduction and mutagenesis in chronically treated mice that remained healthy until the end of all experiments.

Our mutation spectrometry analysis, which established the first comprehensive database of 4-ABP-induced mutations in mouse bladder in vivo, confirmed the known mutagenic potentials of 4-ABP-DNA adducts (38, 42, 43). We found a characteristic spectrum of mutations in bladder of 4-ABP-treated mice, which included a preponderance of mutations occurring at G:C basepairs, with the vast majority being G:C→T:A transversion mutations (see, Table S3 and Figure 4). Analysis of the mutation spectrum in relation to mutant frequency revealed that G:C→T:A transversion mutations accounted for approximately half of all the increase in cII mutant frequency found in bladder of chronically treated mice (see, Fig. 5). Other major types of mutations contributing to the elevation of cII mutant frequency in bladder of 4-ABP-treated mice were G:C→A:T transitions and G:C→C:G transversions, which comprised 23.1 and 11.9%, respectively, of all the induced mutations (see, Table S3 and Figure 5). The above targeting of mutations at G:C basepairs is consistent with the high affinity of 4-ABP to bind guanine residues in the DNA (16, 23, 24). 4-ABP or its derivatives react preferentially with the C8 position of guanine, thereby, forming a major covalent adduct, N-(deoxyguanosine-8-yl)-4-ABP (4-ABP-DNA adduct) (16, 23, 24). Theoretical and spectroscopic analyses have shown that the 4-ABP-DNA adduct readily adopts a ‘syn’ conformation around the guanine-deoxyribose linkage, and this conformational change intensifies in destabilized or unwound DNA helices, e.g., during DNA replication (44, 45). The ‘syn’ conformation places the O6 and N7 atoms of the modified guanine in a position to mispair with N6 and N1 atoms of an adenine or with N1 and N2 atoms of a guanine in the complementary strand, thus, resulting in G→T or G→C.
transversion mutations, respectively (46, 47). In vitro and/or in vivo studies in various model systems have shown that 4-ABP or its metabolites induce both G:C→T:A and G:C→C:G transversion mutations, with the former being the most prominent type of mutation (38, 42, 43, 48-50). Furthermore, mutation analysis of the TP53 gene in human bladder tumors has shown that G:C→A:T transition mutations are the prevalent type of mutation found in the general population or specifically in individuals with known history of exposure to aromatic amines (43). Prospectively, computational prediction modeling or structural analysis will elucidate how G:C→A:T transition mutations may arise from 4-ABP-DNA adduction.

In summary, we have demonstrated a unique organ-specificity of 4-ABP in inducing persistent DNA adduction and mutagenesis in mice in vivo. Whereas repair-resistant 4-ABP-DNA adducts are formed in bladder, kidney and liver of carcinogen-treated mice, which accords with the bioactivation pathway of this chemical in the respective organs (17, 20-22), a predominant and sustained mutagenic effect is found in bladder, consistent with bladder-specificity of tumorigenesis known for this chemical (34, 35). Additionally, 4-ABP is weakly but significantly mutagenic in the kidney and liver of carcinogen-treated mice. Of significance, the spectrum of mutations produced in the bladder of 4-ABP-treated mice perfectly reflects the known mutagenic potentials of 4-ABP-DNA adducts (38, 42, 43, 48-50). Altogether, our findings support the etiologic involvement of 4-ABP in the genesis of bladder cancer, and provide a perspective on how DNA adduction leading to mutagenesis, which is specifically targeted to bladder urothelial cells, may account for bladder-tumorigenicity of this carcinogen.
ACKNOWLEDGEMENT

We would like to thank the staff and management of the City of Hope Animal Resources Center, in particular, Lauren Ratcliffe, Marie Prez, Armando Amaya, Yvonne Harper, Donna Isbell, Kenneth Golding, and Dr. Richard Ermel. Special thanks Dr. Walter Tsark for helpful discussion on IACUC protocol preparation, and Dr. Gerd Pfeifer for providing research support.
REFERENCES

FIGURE LEGENDS

Figure 1

DNA adduction in various organs of 4-ABP-treated mice and controls. The formation and repair of 4-ABP-DNA adducts in bladder, lung, stomach, kidney, and liver of mice chronically treated with 4-ABP (6 weekly doses), before and after a six-week recovery period, were determined using an immunodot blot assay with the mouse monoclonal 4C11 antibody, as described in ‘Materials and Methods’. Panel (A) and panel (B) show the qualitative- and quantitative results, respectively. Numbers in panel (A) indicate mice IDs. Results in panel (B) are expressed as medians (bars); Error bars = 95% CIs.

Note: The background immuno-staining in each organ in control groups, including (I) six weeks sham exposure; and (II) six weeks sham exposure plus six weeks recovery, were virtually identical (data not shown). For brevity, representative immunodot blot assay results from the control group (II) are shown.

Figure 2

cII Mutant frequency in various organs of 4-ABP-treated mice and controls. The mutant frequencies of cII transgene in bladder, lung, stomach, kidney, and liver of mice chronically treated with 4-ABP (6 weekly doses), before and after a six-week recovery period, were determined using the cII mutagenesis assay, as described in ‘Materials and Methods’.

* Statistically significant as compared to Control; P = 0.0079
† Statistically significant as compared to Control; P < 0.008
§ Statistically significant as compared to Control; P = 0.0317
¶ Statistically significant as compared to Control; P < 0.008
** Statistically significant as compared to Control; \(P = 0.0465 \)

Results are expressed as medians (bars).

Error bars = 95% CIs.

Note: The background frequency of \(cII \) mutants in each organ in control groups, including (I) six weeks sham exposure; and (II) six weeks sham exposure plus six weeks recovery, were not significantly different from one another (*data not shown*). Thus, we used the data only from the control group (II) for all comparison purposes.

Figure 3

Detailed mutation spectra of \(cII \) transgene in bladder of 4-ABP-treated mice and controls. The spectra of mutations in the \(cII \) transgene in 4-ABP-treated mice and controls were established by DNA sequencing of mutants from bladder DNA of carcinogen-treated mice and controls, as described in ‘Materials and Methods’. The 4-ABP-induced mutations are typed above the reference \(cII \) sequence, whereas the control mutations are typed below the reference \(cII \) sequence. Deleted bases are underlined. Inserted bases are shown with an arrow. Numbers below the bases are the nucleotide positions.

Figure 4

Spectra of \(cII \) mutations in bladder of 4-ABP-treated mice and controls. Absolute mutant frequency of each specific type of mutation in the \(cII \) transgene of bladder DNA from 4-ABP-treated mice and controls:
(A) Sibling mutations are included (for a definition of these mutations, see, text).

(B) Sibling mutations are excluded. Horizontal lines within bars represent the contribution of mutations occurring specifically at 5′-CpG dinucleotides.

Figure 5
Spectrum of induced cII mutations in bladder of 4-ABP-treated mice. Percentage increase [Induced mutation (%)] in frequency of each specific type of mutation in the cII transgene of bladder DNA from 4-ABP-treated mice relative to control:

(A) Sibling mutations are included (for a definition of these mutations, see, text).

(B) Sibling mutations are excluded.
ABBREVIATIONS

4-ABP, 4-aminobiphenyl; CI, confidence interval; DMSO, dimethylsulfoxide; *E.coli*, *Escherichia coli*; *i.p.*, intraperitoneal; NFM, non-fat milk; PBS, phosphate-buffered saline; PBS-T, PBS plus 0.2% Tween 20; PCR, polymerase chain reaction.
Fig. 1

(A) 4-ABP 4-ABP + Recovery Control

Bladder 220 229 230 231 232
Liver
Kidney
Stomach
Lung

Mouse ID 221 222 223 247 248 238 239 240 241 251

(B) Control 4-ABP 4-ABP + Recovery

Relative luminescence intensity
(ARbitrary units)

0 2 4 6 8 10 12 14 16 18 20
Bladder Liver Kidney Stomach Lung
Fig. 2
Fig. 4

(A) Mutant frequency (x10^{-5})

- G:C → C:G
- G:C → T:A
- G:C → A:T
- A:T → T:A
- A:T → G:C
- A:T → C:G
- Del.
- Ins.

(B) Mutant frequency (x10^{-5})

- G:C → C:G
- G:C → T:A
- G:C → A:T
- A:T → T:A
- A:T → G:C
- A:T → C:G
- Del.
- Ins.
Fig. 5
Organ specificity of the bladder carcinogen 4-aminobiphenyl in inducing DNA damage and mutation in mice

Jae-In Yoon, Sang-In Kim, Stella Tommasi, et al.

Published OnlineFirst November 15, 2011.

Updated version

Access the most recent version of this article at:

[doi:10.1158/1940-6207.CAPR-11-0309](http://10.1158/1940-6207.CAPR-11-0309)

Supplementary Material

Access the most recent supplemental material at:

http://cancerpreventionresearch.aacrjournals.org/content/suppl/2011/11/15/1940-6207.CAPR-11-0309.DC1

Author Manuscript

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.