MiR-194 as a predictor for adenoma recurrence in patients with advanced colorectal adenoma after polypectomy

Zhen-Hua Wang1* MD, Lin-Lin Ren1* MD, Ping Zheng2 MD, Hai-Ming Zheng2 MD, Ya-Nan Yu1 MD, Ji-Lin Wang1 MD, Yan-Wei Lin1 MD, Ying-Xuan Chen1# MD, Zhi-Zheng Ge1 MD, Xiao-Yu Chen1 MD, Jie Hong1# PhD, Jing-Yuan Fang1# MD &PhD

* The two authors contributed equally to this work.

1 Division of Gastroenterology and Hepatology, Ren-Ji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease. Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; State Key Laboratory of Oncogene and Related Genes, 145 Middle Shandong Rd, Shanghai 200001, China.

2 Division of Gastroenterology and Hepatology, Shanghai 1st Hospital, Shanghai Jiao-Tong University.

#Correspondence to: Jing-Yuan Fang, Jie Hong and Ying-Xuan Chen
Renji Hospital, School of Medicine, Shanghai Jiao-Tong University
145 Shandong Rd Middle. Shanghai 200001, China
Tel: +86-21-53882450, Fax: +86-21-63266027
Email: jingyuanfang2007@126.com, jiehong97@gmail.com or yingxuanchen71@126.com

Running title: MiR-194 as a predictor for adenoma recurrence

Key words: advanced colorectal adenoma; recurrence; miR-194

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81320108024), the Ministry of Public Health, China (No. 200802094), the Ministry of Education (No. 20120073110078) to Jing-Yuan Fang; the grant from the National Natural Science Foundation (No. 31271366) to Jie Hong; the grant from the National Natural Science Foundation (No. 81372267) to Zhen-Hua Wang; and The National Key Technology R&D Program (No. 2014BAI09B05) to Ying-Xuan Chen.

Conflict of interest statements

The authors have declared no conflicts of interest.
ABSTRACT

MicroRNAs (miRs) are promising predictors in colorectal cancer (CRC). We investigated whether miRNAs could predict adenoma recurrence in patients with advanced colorectal adenoma (ACRA) after polypectomy. MiRNA expression profiling was performed by miRNA microarray to identify recurrence related miRNAs. Candidate miRNAs extracted from FFPE blocks of ACRA patients were measured using real-time PCR. Logistic regression analysis was conducted to investigate whether validated miRNA expression profiles were independent from other known adenoma recurrence risk factors. The prognostic values of six miRNAs and three independent risk factors were assessed by the area under the receiver operating characteristic (ROC) curve analysis. The expressions of six candidate miRNAs were significantly decreased from levels in normal colorectal tissue compared to ARCA with adenoma recurrence (RACRA) in this retrospective cohort. However, only miR-194 emerged as a practical predictor. The sensitivity and specificity of miR-194 as a predictor were 71.0% and 78.0%, respectively, at a cut-off value of 0.1311 in the retrospective cohort. Sensitivity and specificity were 76.1% and 77.2%, respectively, in the prospective cohort using the same cut-off value. Low expression levels of miR-194, adenoma size ≥2 cm and ≥3 adenomas were independent risk factors for adenoma recurrence. Moreover, low expression of miR-194 was a better predictor of adenoma recurrence than the adenoma size and numbers according to ROC curve analysis. MiR-194 may be an independent predictor for adenoma recurrence in patients with advanced colorectal adenoma after polypectomy.
INTRODUCTION

Advanced colorectal adenomas (ACRAs) are precursors of colorectal cancer (CRC) and their removal is central for reducing incidence and mortality rates (1). Treatment strategies for removal of ACRAs rely on their prior detection by colonoscopy and follow-up surveillance (2). In the US, patients with ACRAs are recommended to have 3-year follow-up colonoscopies (3). The removal of adenomas lowers the risk of CRC; however, CRC is still the third most common cancer and the second leading cause of death from cancer in the US (4). This is because the recurrence of adenomas (46.7%), especially ACRA (11.8%), after polypectomy is common during a median follow-up period of 47.2 months (5). The study suggested that aggressive re-colonoscopies may be more effective in preventing CRC.

Consequently, postpolypectomy surveillance has been increased to occupy about 25% of total colonoscopy capacity (6) and poses a substantial burden on healthcare systems. Therefore, recognizing patients who have the potential for adenoma recurrence to undergo individualized surveillance is a key step to solve this dilemma. To date, the prediction of adenoma recurrence has remained difficult, even though there have been several trials exploring adenoma recurrence related molecules during food or drug interventions (7-12). Therefore, predictors associated with adenoma recurrence are urgently required to distinguish high risk patients for repetitive surveillance.

MicroRNAs (miRNAs) are 18-25 nucleotide non-coding RNA molecules that regulate the expression of target genes by binding to partially complementary recognition sequences of target mRNAs (13). Changes in miRNA expression play a
crucial role in human cancer (14). MiRNAs has been shown to be a practical predictor associated with prognosis in CRC (15-17), and to be superior to mRNA, due to its small size, stability, and resistance to RNase degradation (18). Considering the potential prognostic value in CRC, we explored differentially expressed miRNAs from ACRAs with adenoma recurrence (RACRA) compared to ACRAs with no adenoma recurrence (NRACRA) to establish a predictor for adenoma recurrence.

MATERIALS AND METHODS

Clinical specimen collection

All nine samples (miRNA microarray cohort) were obtained in 2007 from Shanghai 1st Hospital for miRNA microarray analysis. Six fresh adenoma tissue samples were obtained from ACRA patients who underwent polypectomy during surveillance intervals of 22-24 months: three with adenoma recurrence (RACRA) and three with no adenoma recurrence (NRACRA). Three fresh samples of normal colorectal tissue were obtained from healthy volunteers. Formalin-fixed paraffin-embedded (FFPE) samples were obtained from 37 healthy volunteers and 227 ACRA patients who underwent polypectomy from a retrospective cohort recruited at Renji Hospital, in addition to 158 ACRA patients after polypectomy in prospective cohort at Shanghai 1st Hospital. A summary of the characteristics of the study participants and adenomas is shown in Table S1.

Study design

The study was divided into three parts. In the first study, miRNA microarray analyses were performed on samples from the miRNA microarray cohort. The second
study was based on the retrospective study (Figure 1A), involving the 37 healthy volunteers and 227 ACRA patients between 2006 and 2007 at Renji Hospital. Of the 227 patients, 100 experienced adenoma recurrence and 127 had no recurrence of their adenoma during surveillance periods of 22-24 months. The third study was based on a prospective study, which included the 158 ACRA patients in 2010 at the Shanghai 1st Hospital (Figure 1B). Data collected during the study interval (January 1st 2006 to December 31st 2012) included adenoma characteristics, patients’ clinical characteristics, and outcomes of surveillance colonoscopy. For inclusion in the study, patients had to meet the following criteria: (1) ACRA, defined as a tubular adenoma with a diameter of ≥10 mm, at least 25% villous elements, or the presence of high-grade intraepithelial neoplasia; (2) complete colonoscopy in which the bowel was prepared adequately, the cecum was visualized, and all visualized lesions were removed by polypectomy; (3) at least one surveillance colonoscopy was performed within 6 months after polypectomy to remove missed adenomas; and (4) no history of CRC, familial adenomatous polyposis, inflammatory bowel disease, and bowel resection excluding appendectomy. All adenomas found during subsequent colonoscopies within 6 months of the initial colonoscopy were regarded as missed adenomas. An adenoma detected at the previous polypectomy site was regarded as a local residual adenoma. Recurrent adenoma was defined if at least three adenomas were found during the surveillance colonoscopy, irrespective of size, or at least one metachronous adenoma that measured ≥6 mm in diameter.

To ensure a standardized pathological diagnosis, two pathologists independently
examined one slide from each polyp. Discrepancies were resolved by the local pathologist. For individuals with more than one adenoma, the highest degree of villous component or intraepithelial neoplasia grade was used for classification purposes. For individuals with more than one resected adenoma, the largest was used for classification of size and for miRNA expression analysis. Adenoma location was classified as distal colon and rectum (rectum, rectosigmoid, sigmoid colon, descending colon, splenic flexure) or proximal colon (transverse colon, hepatic flexure, ascending colon and cecum). For individuals with more than one adenoma located in both sites, a separate category was created.

RNA isolation and Real-time quantitative reverse transcription PCR (qRT-PCR)

Total RNA was extracted from FFPE tissues using RecoverAll™ Total Nucleic Acid Isolation Kit (Catalog Number: AM1975; Ambion, Shanghai, China). Total RNA was eluted in 50 µl nuclease-free water. The RNA concentration was measured with a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE).

For miRNA-based real-time quantitative reverse transcription PCR (qRT-PCR) assays, 2.0 µg total RNA from FFPE samples was reverse-transcribed in a total reaction volume of 25 µl, using the All-in-One MiRNA Q-PCR Detection Kit (Catalog Number: AOMD-Q050, GeneCopoeia, Rockville, MD), according to the manufacturer’s instructions. A dilution factor of 1:5 for the RT products was used as a template for the qRT-PCR stage. Real-time qRT-PCR for mature miRNAs and RNU6B (internal control) were performed in triplicate according to the manufacturer’s instructions, using specific primers provided by GeneCopoeia.
Global miRNA expression profiling of normal colorectal tissues (Normal), NRACRA tissues, and RACRA tissues was performed by miRNA microarray analysis to identify potential adenoma recurrence related miRNAs. Selection criteria of candidate miRNAs were based on two principles: (1) candidate miRNAs increased or decreased expression from normal colorectal tissues, NRACRA and RACRA successively with respect to decreasing or increasing grades of carcinogenesis. (2) The threshold value used to define upregulation or downregulation of miRNAs between NRACRA and RACRA was a fold change >1.5, with significance set at P<0.05, calculated by Student’s t-test. The preliminary selections were miR-10a, miR-141, miR-146a, miR-151, miR-194, and miR-3607-3p based on their decreased expression.
expression from normal colorectal tissues, NRACRA and RACRA in parallel with increasing carcinogenesis (Figure 2A and B; Table S2 and S3). However, none of the miRNAs showed increased levels of expression when correlated against carcinogenesis progression. Therefore, these six miRNAs were selected for further validation and analysis.

Validation of the six candidate miRNAs

The expression levels of the six candidate miRNAs (miR-10a in Figure 3A a1, miR-141 in Figure 3A a2, miR-146a in Figure 3A a3, miR-151 in Figure 3A a4, miR-194 in Figure 3A a5, and miR-3607-3p in Figure 3A a6) in FFPE samples of normal colorectal tissues (n = 37); NRACRA tissues (n = 127); and RACRA tissues (n = 100) from the retrospective cohort, were investigated by real-time qRT-PCR (Figure 3A). In normal colorectal tissues, the expression levels [log10 (2^-Ct); mean ± SEM] of miR-10a, miR-141, miR-146a, miR-151, miR-194, and miR-3607-3p were -0.4051 ± 0.09350, -0.4063 ± 0.08481, -0.3589 ± 0.1113, -0.4284 ± 0.09397, 0.6322 ± 0.08677, and 0.5999 ± 0.09928, respectively; in NRACRA tissues, the expression levels were -0.5308 ± 0.06439, -0.5774 ± 0.05234, -0.6110 ± 0.05903, -0.8192 ± 0.06558, 0.4484 ± 0.06556, and 0.2879 ± 0.08477, respectively; in RACRA tissues, the expression levels were -1.005 ± 0.08165, -0.8962 ± 0.06793, -0.9736 ± 0.07292, -1.207 ± 0.07867, -0.1601 ± 0.08431, and -0.04026 ± 0.09734, respectively. These data suggest that the expression levels of all six candidate miRNAs were significantly decreased in RACRA and NRACRA tissues compared to control samples; furthermore, these six miRNA candidates were expressed at significantly lower levels in RACRA tissues.
compared to NRACRA tissues (Mann-Whitney U test; \(P < 0.001 \)).

ROC curve analyses were conducted to investigate the potential adenoma recurrence prediction value of the six candidate miRNAs (Figure 3B). The AUC (the area under the ROC curve) cut-off value, sensitivity, and specificity for six miRNAs (miR-10a in Figure 3B b1, miR-141 in Figure 3B b2, miR-146a in Figure 3B b3, miR-151 in Figure 3B b4, miR-194 in Figure 3B b5, and miR-3607-3p in Figure 3B b6) are shown in Table 1. MiR-194 is demonstrated to be a practical predictor, with an AUC of 0.755. The optimal sensitivity and specificity were 71.0% and 78.0%, respectively, at a cut-off value of 0.1311. As the AUCs of the other candidate miRNAs were all less than 0.70, their prognostic value is likely to be limited. Therefore, the other five miRNAs were excluded from further prospective cohort validations.

Based on miR-194 expression levels, the 158 ACRA patients were assigned to high expression group (miR-194 log$_{10}$ ($2^{-\Delta C_{t}}$) > 0.1311; \(n = 93 \)) or low expression group (miR-194 log$_{10}$ ($2^{-\Delta C_{t}}$) \(\leq 0.1311 \); \(n = 65 \)). During the surveillance intervals of 22-24 months, 11 patients dropped out, including seven from the low expression group and four from the high expression group. Final surveillance colonoscopy results showed adenoma recurrence in 35 patients from the low expression group (\(n = 58 \)); and in 11 patients from the high expression group (\(n = 89 \)) (Figure 1B). The optimal sensitivity and specificity with respect to a cut-off value of 0.1311 were 76.1% (95% CI: 61.2%-87.4%) and 77.2% (95% CI: 67.8%-85.0%), respectively. These data indicate that low expression of miR-194 may be a predictor for adenoma recurrence. **Low expression of miR-194 as an independent factor for adenoma recurrence**

Logistic regression analysis was conducted to investigate whether the prognostic
value of miR-194 was independent of other potential adenoma recurrence related factors. Table 2 presents the results of logistic regression analysis for adenoma recurrence at colonoscopy surveillance among ACRA patients at baseline in the two combined cohorts. In the univariate analysis, male gender, low expression of miR-194, adenoma size ≥2 cm, number of adenomas ≥3, adenomas in both locations or in proximal regions, villous components ≥50% and high-grade intraepithelial neoplasia were associated with adenoma recurrence. In the multivariate analysis, the following factors were independently associated with adenoma recurrence: low expression of miR-194, adenoma size ≥2 cm and number of adenomas ≥3.

Evaluation for prognostic value for independent adenoma recurrence related factor

We performed ROC curve analyses to compare the prognostic value of the three independent adenoma recurrence related factors (low expression of miR-194, adenoma size ≥2 cm and ≥3 adenomas). The AUC, sensitivity, and specificity for three recurrence related factors are shown in Figure 4A-C. These analyses confirmed that low expression of miR-194 is better for predicting adenoma recurrence than adenoma size ≥2 cm (P<0.001) and ≥3 adenomas (P<0.001) (Figure 4D).

DISCUSSION

Recognition of adenoma recurrence after ACRA polypectomy is the key to reducing the incidence of CRC. Currently, the prediction of adenoma recurrence relies on morphology and histopathology of the tumor (5); however, the underlying molecular mechanisms and carcinogenetic potential can be very different in otherwise morphologically or pathologically similar tumors. Although there have been several trials investigating adenoma recurrence related molecules (7-12), all of these studies were food or drug prevention trials, which suggested that these molecules only predict
the efficacy of bioactive substance interventions, rather than for use in ACRA patients.

Given the potential prognostic value of miRNAs in CRC (15-17), the miRNA profiles were analyzed to examine their potential roles in ACRA prognosis. The six candidate miRNAs were selected for further validation based on their potential anti-oncogenic effects. Only miR-194 demonstrated a higher ability for predicting adenoma recurrence in the retrospective cohort. Moreover, the expression profile of miR-194 was validated in the prospective cohort, which confirmed its predictive value. The presence of multiple adenomas, large adenomas, proximal adenomas, old age, male sex, or obesity have been demonstrated to be related to the recurrence of adenoma in a pooled analysis comprising 9,167 postpolypectomy patients (5). Therefore, this study evaluated whether the prognostic value of low miR-194 expression was independent of the above known factors. Our multivariate analyses confirmed the importance of low expression of miR-194 independently, as well as adenoma size \(\geq 2 \) cm and \(\geq 3 \) adenomas for determining risk. However, the latter two factors have very limited predictive ability with both AUCs <0.60. According to European guidelines (19), three or more adenomas with at least one \(>1 \) cm in size detected at any single examination indicates high risk and an extra examination should be undertaken at 12 months before returning to 3-yearly surveillance colonoscopies. In our study, 374 patients completed surveillance colonoscopy, in which 33 patients had more than three adenomas with at least one \(>1 \) cm. In those patients, 22 cases of recurrent adenoma occurred. The combination of adenoma size \(\geq 1 \) cm and \(\geq 3 \) adenomas showed a sensitivity and specificity of 15.1% (95% CI: 9.7%-22.0%) and 95.2% (95% CI: 91.6%-97.6%), respectively. Our study suggests that although these two parameters are major risk factors for adenoma recurrence,
many cases of adenoma recurrence are still missed with 2 yearly surveillance colonoscopies. The low expression of miR-194 has improved our ability to predict recurrence, over and above morphological characteristics of the adenoma in surveillance colonoscopies.

To the best of our knowledge, we have performed the largest study yet to analyze miRNA profiles related to adenoma recurrence in ACRA patients after polypectomy and the first to use two independent cohorts. Both cohorts showed low miR-194 expression in ACRAs as an independent predictor for adenoma recurrence. Our data are consistent with previous studies that have shown that the downregulation of miR-194 expression promotes carcinogenesis. In these studies, dramatic decreases in miR-194 expression were found in hepatocellular carcinoma (20, 21), CRC (22), gastric cancer (23), and multiple myeloma (24), suggesting its tumor-suppressive function. Chiang et al also confirmed miR-194 as a tumor-suppressor gene in CRC patients (22), while another study revealed a pro-angiogenesis function of miR-194 in HCT116 cells (25). Up to date, miR-192 and miR-215 have been reported to share the same ‘seed region’ in the miRBase and HGNC websites: MiR-192 and miR-194-2 are at 11q13.1 on the same chromosome, and miR-194-1 and miR-215 are at 1q41. Furthermore, miR-194 is composed from the mature sequences of miR-194-1 and miR-194-2. Several studies have indicated that miR-194 and its cluster associates, miR-192 and miR-215, may function as tumor suppressors capable of inhibiting cell proliferation and suppressing carcinogenesis through p53 protein upregulation and p21 activation (24, 25). A recent study demonstrated that miR-194 was transcriptionally upregulated by a gastrointestinal tract with enriched hepatic nuclear factor 1α (HNF1-α) during intestinal epithelium differentiation (26). Therefore, we speculated that miR-194 might be relatively specific to the gastrointestinal tract, and
aberrations of the nuclear receptor, HNF1-α, may partially account for the downregulation of miR-194. We hypothesized that low expression of miR-194 in the pre-existing advanced adenoma may represent altered expression of miR-194 in the entire colon tissues. Therefore, low expression of miR-194 in the pre-existing advanced adenoma could be a predictor for adenoma recurrence. This hypothesis was supported by a clinical study performed by Chen et al, in which the low expression of miR-126 in liver tissues was significantly associated with tumor recurrence in HCC patients who underwent liver transplantation (27). Certainly, we also should investigate whether the expression of miR-194 is downregulated in the normal colon mucosa and recurrent adenoma of the patients. However, the experimental validation is difficult, since 1) normal colon mucosa tissue was obtained only by EMR in surveillance colonoscopy. However, the EMR operation for normal colon mucosa in adenoma patients did not meet clinical ethics principle. 2) The pre-existing adenoma was removed by snare of high-frequency electric resection or endoscopic mucosal resection. However, part of recurrent adenomas (relatively small) in surveillance colonoscopy was removed by argon plasma coagulation, which destroyed tissue and made it could not be kept in paraffin material.

The detection of FFPE-based miRNAs have several distinct advantages: 1) miRNA expression is very stable in FFPE blocks (28), and has very high concordance in FFPE and fresh-frozen preserved samples (29); 2) FFPE tissues are the most accessible biological resources, and are easily stored; 3) the diagnosis of ACRA is established on hematoxylin and eosin stained slides, which are only sourced from FFPE specimens.

In conclusion, as well as adenoma size ≥2 cm and ≥3 adenomas, the low expression of miR-194 is an independent predictor for adenoma recurrence in patients
with advanced colorectal adenoma after polypectomy in surveillance colonoscopies.

REFERENCES
17. Nishida N, Yokobori T, Mimori K, Sudo T, Tanaka F, Shibata K, et al. MicroRNA miR-125b is a

Figure legends

Figure 1: Flowchart of (A) retrospective study and (B) prospective study.

Figure 2: (A) Heat map of miRNA microarray expression data from fresh tissue samples of normal colorectal tissues, NRACRA tissues and RACRA tissues. The
expression of miRNA is hierarchically clustered on the y-axis, and samples from three groups are hierarchically clustered on the x-axis. The legend on the right indicates the miRNA represented in the corresponding row. The relative miRNA expression is depicted according to the color scale shown on the right. Red indicates upregulation; green, downregulation. (B) MiRNA microarray showed that the expression of miR-10a, miR-141, miR-146a, miR-151, miR-194 and miR-3607-3p levels decreased with the progression from normal colorectal tissues to RACRA tissues through NRACRA tissues with respect to increasing carcinogenesis of the colorectal tissue.

Figure 3: (A) Expression of six candidate FFPE-based miRNAs in normal colorectal tissues, NRACRA tissues and RACRA tissues from retrospective cohort. All six miRNA candidates were expressed at significantly lower levels in RACRA tissues compared to NRACRA tissues (Mann-Whitney U test; $P<0.001$). (B) The potential prognostic value of six candidate miRNAs according to ROC curve analysis from the retrospective cohort. Solid line represents the actual sensitivity and specificity of the test, while the dashed lines represent the 95% confidence interval.

Figure 4: Potential predictive value in ROC curve analysis from two cohorts combined of (A) low expression levels of miR-194 (B) adenoma size ≥ 2 cm and (C) ≥ 3 adenomas. (D) Pairwise comparison of three independent adenoma recurrence related factors according to ROC curve analysis.
Table 1 Potential predictive value of six candidate miRNAs from retrospective cohort in ROC curve analysis

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Cut off value log_{10}(2^{-Ct})</th>
<th>AUC (95% C.I.)</th>
<th>Sens. (95% C.I.)</th>
<th>Spec. (95% C.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-10a</td>
<td><=-0.1789</td>
<td>0.655 (0.589-0.717)</td>
<td>43.0 (33.1-53.3)</td>
<td>83.5 (75.8-89.5)</td>
</tr>
<tr>
<td>miR-141</td>
<td><=-0.6451</td>
<td>0.643 (0.577-0.705)</td>
<td>69.0 (50.0-77.9)</td>
<td>60.6 (51.6-69.2)</td>
</tr>
<tr>
<td>miR-146a</td>
<td><=-0.7682</td>
<td>0.631 (0.565-0.694)</td>
<td>62.0 (51.7-71.5)</td>
<td>60.6 (51.6-69.2)</td>
</tr>
<tr>
<td>miR-151-3p</td>
<td><=-0.6160</td>
<td>0.648 (0.582-0.710)</td>
<td>79.0 (69.7-86.5)</td>
<td>45.7 (36.8-54.7)</td>
</tr>
<tr>
<td>miR-194</td>
<td><=-0.1311</td>
<td>0.755 (0.694-0.810)</td>
<td>71.0 (61.1-79.6)</td>
<td>78.0 (69.7-84.8)</td>
</tr>
<tr>
<td>miR-3607-3p</td>
<td><=-0.0534</td>
<td>0.696 (0.632-0.755)</td>
<td>68.0 (57.9-77.0)</td>
<td>71.7 (63.0-79.3)</td>
</tr>
</tbody>
</table>

AUC; areas under the ROC curve, Sens; sensitivity, Spec; specificity
Table 2 Logistic regression analysis of potential adenoma recurrence related factors

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Univariate Analysis</th>
<th>Multivariate Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>P Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two cohorts combined (excluding 37 healthy volunteers and 11 withdrawn patients $n = 374$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at enrollment, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>1.0 [Reference]</td>
<td></td>
</tr>
<tr>
<td>≥60</td>
<td>1.18 (0.79-1.79)</td>
<td>0.434</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.0 [Reference]</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.53 (0.98-2.39)</td>
<td>0.063</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td><23</td>
<td>1.0 [Reference]</td>
<td></td>
</tr>
<tr>
<td>≥23</td>
<td>0.95 (0.63-1.44)</td>
<td>0.808</td>
</tr>
<tr>
<td>FFPE-based miR-194 expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High ($\log_{10} (2^{-\Delta C_t}) > 0.1311$)</td>
<td>1.0 [Reference]</td>
<td></td>
</tr>
<tr>
<td>Low ($\log_{10} (2^{-\Delta C_t}) \leq 0.1311$)</td>
<td>8.89 (5.52-14.32)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adenoma size<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 cm</td>
<td>1.0 [Reference]</td>
<td></td>
</tr>
<tr>
<td>1 to 2 cm,</td>
<td>1.15 (0.70-1.91)</td>
<td>0.574</td>
</tr>
<tr>
<td>≥2 cm</td>
<td>3.18 (1.41-7.17)</td>
<td>0.005</td>
</tr>
<tr>
<td>No. of adenomas</td>
<td></td>
<td></td>
</tr>
<tr>
<td><3</td>
<td>1.0 [Reference]</td>
<td></td>
</tr>
<tr>
<td>≥3</td>
<td>2.50 (1.59-3.92)</td>
<td><0.001</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal colon and rectum</td>
<td>1.0 [Reference]</td>
<td></td>
</tr>
<tr>
<td>Both<sup>b</sup></td>
<td>1.54 (0.97-2.45)</td>
<td>0.070</td>
</tr>
<tr>
<td>Proximal</td>
<td>2.82 (1.44-5.50)</td>
<td>0.002</td>
</tr>
<tr>
<td>Villous components<sup>c</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraepithelial neoplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td><50%</td>
<td>1.0 [Reference]</td>
<td>1.70</td>
</tr>
<tr>
<td>≥50%</td>
<td>(1.12-2.60)</td>
<td></td>
</tr>
<tr>
<td>Intraepithelial neoplasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild-grade</td>
<td>1.0 [Reference]</td>
<td>1.82</td>
</tr>
<tr>
<td>High-grade</td>
<td>(1.15-2.88)</td>
<td></td>
</tr>
</tbody>
</table>

a Size of largest adenoma
b Adenomas in both distal colon and rectum and proximal colon

\[\text{Highest degree of histology.}\]
Figure 1

A. 264 subjects included in the study in 2006-2007 (retrospective cohort)

37 cases of healthy volunteers

227 cases of patients with ACRA

During surveillance intervals of 22-24 months

Recurrence (n=100)

Non-recurrence (n=127)

B. 158 cases of patients with ACRA included in this study in 2010 (prospective cohort)

According to cut off value (mir-194 Log_{10} (2^{-ΔCt}) ≤ 0.1311)

Low expression group (n=65)

High expression group (n=93)

During surveillance intervals of 22-24 months, 11 patients dropped out

Low expression group (n=58)

High expression group (n=89)

Recurrence (n=35)

Non-recurrence (n=23)

Recurrence (n=11)

Non-recurrence (n=78)
Figure 2

Author Manuscript Published OnlineFirst on April 1, 2014; DOI: 10.1158/1940-6207.CAPR-13-0426

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

A

B

b1 miR-10a
P=0.0033

P=0.0127
P=0.0025

Normalized expression

Normal
NRACRA
RACRA

b2 miR-141
P<0.0001

P<0.0001
P=0.0013

Normalized expression

Normal
NRACRA
RACRA

b3 miR-146a
P=0.0190

P=0.0376
P=0.0101

Normalized expression

Normal
NRACRA
RACRA

b4 miR-151-3p
P=0.0041

P=0.0085
P=0.0001

Normalized expression

Normal
NRACRA
RACRA

b5 miR-194
P=0.0128

P=0.1705
P=0.0085

Normalized expression

Normal
NRACRA
RACRA

b6 miR-3607-3p
P=0.0125

P=0.0219
P=0.0003

Normalized expression

Normal
NRACRA
RACRA
Cancer Prevention Research

MiR-194 as a predictor for adenoma recurrence in patients with advanced colorectal adenoma after polypectomy

Zhen-Hua Wang, Lin-Lin Ren, Ping Zheng, et al.

Cancer Prev Res Published OnlineFirst April 1, 2014.