COMMENTARY

171 Accelerating the Pace of Cancer Prevention—Right Now
Graham A. Colditz and Karen M. Emmons

EDITORIALS

185 Immunomodulatory Effects of Momordica charantia Extract in the Prevention of Oral Cancer
Chinthalapally V. Rao
See related article, p. 191

Carol J. Fabian and Bruce F. Kimler
See related article, p. 203

RESEARCH ARTICLES

191 Bitter Melon Prevents the Development of 4-NQO–Induced Oral Squamous Cell Carcinoma in an Immunocompetent Mouse Model by Modulating Immune Signaling
Subhayyan Sur, Robert Steele, Rajeev Aurora, Mark Varyares, Katherine E. Schwetey, and Ratna B. Ray
See related editorial, p. 185

203 A Randomized Multicenter Phase II Study of Docosahexaenoic Acid in Patients with a History of Breast Cancer, Premalignant Lesions, or Benign Breast Disease
See related editorial, p. 187

CORRECTION

249 Correction: Whole-Genome Sequencing of Salivary Gland Adenoid Cystic Carcinoma
ABOUT THE COVER

Obesity-related inflammation is implicated in the development of breast cancer. Obesity-induced adipocyte hypertrophy, hypoxia and macrophage infiltration, and adipose stromal cell hyperplasia with increased local and systemic pro-inflammatory adipokines and cytokines fuel the process.

Preclinical and epidemiologic studies suggest that the inflammation resolving marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) reduce risk of breast cancer development. A key mechanism is thought to be replacement of arachidonic acid in cell membranes resulting in the formation of less inflammatory eicosanoids, as well as protectins and resolvins. In addition, EPA and DHA disrupt lipid rafts reducing activation of tyrosine kinase receptors such as EGFR. The dose of DHA or EPA combined or as single agents necessary for inflammation resolution or lipid raft disruption in humans is unclear; however, pre-clinical studies suggest that DHA may be superior to EPA for breast cancer prevention. Beginning on page 203, Gucalp and colleagues present results of a placebo-controlled trial in which 3 months of DHA at a dose of 2g/day did not impact expression of several inflammatory genes or prevalence of crown-like structures in benign breast tissue from overweight and obese high-risk women and breast cancer survivors. Potential explanations for these null results include the type and dose of fatty acid used, cohort heterogeneity, and the biomarkers selected, as discussed in an accompanying editorial by Fabian and Kimler on page 187.