REVIEW

371 Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development
Stephen Safe, James Abbruzzese, Maen Abdelrahim, and Erik Hedrick

RESEARCH ARTICLES

383 Ultraviolet Radiation Inhibits Mammary Carcinogenesis in an ER-Negative Murine Model by a Mechanism Independent of Vitamin D3
Anastasia M. Makarova, Flora Frascari, Parastoo Davari, Fazam Gorouhi, Philip Dutt, Lynn Wang, Akash Dhawan, Grace Wang, Jeffrey E. Green, and Ervin H. Epstein Jr

393 Spatial Variation of the Native Colon Microbiota in Healthy Adults
Kaitlin J. Flynn, Mack T. Ruffin IV, D. Kim Turgeon, and Patrick D. Schloss

403 Evaluation of Cancer-Associated DNA Copy Number Events in Colorectal (Advanced) Adenomas
Beatriz Carvalho, Begonia Diosdado, Jochim S. Terhaar Sive Droste, Anne S. Solijn, Malgorzata A. Komor, Meike de Wit, Linda J.W. Bosch, Myrthe van Burink, Evelien Dekker, Ernst J. Kuipers, Veerle M.H. Coupé, Nicole C.T. van Grieken, Remond J.A. Fijneman, and Gerrit A. Meijer

LETTER TO THE EDITOR

439 Mutations of the PDE5A Gene Confer a Survival Advantage in Patients with Colon Cancer
Steven Lehrer, Peter H. Rheinstein, and Kenneth E. Rosenzweig

ABOUT THE COVER

The latitudinal gradient of cancer morbidity, in particular for breast cancer, has been known for ¾ century to correspond inversely with ambient sunlight and its mechanism has been attributed for the past nearly 4 decades to sunlight’s production of cancer-inhibiting vitamin D3 in the skin. Makarova et al (page 383) have tested the anti-cancer effects of ultraviolet irradiation and D3 in a murine cancer model in which large T antigen expressed in the mammary gland drives fatal mammary gland carcinogenesis. They have found that in this model UVR does delay and reduce tumor progression, that vitamin D3 administration, whether given systemically or applied topically to the skin, has no such effect, and that the effects of UVR persist in mice unable to produce D3 on exposure to UVR. The authors suggest that identification of the non-D3, UV-induced molecule that transmits the anti-cancer effect from the skin to the mammary gland might uncover novel approaches for prevention of extra-cutaneous human cancer. On the cover is an image of a murine mammary gland with DCIS, treated with UVR, and stained to display (black) expression of the large T antigen.
## Cancer Prevention Research

11 (7)


<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: <a href="http://cancerpreventionresearch.aacrjournals.org/content/11/7">http://cancerpreventionresearch.aacrjournals.org/content/11/7</a></th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail alerts</td>
<td>Sign up to receive free email-alerts related to this article or journal.</td>
</tr>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at <a href="mailto:pubs@aacr.org">pubs@aacr.org</a>.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link <a href="http://cancerpreventionresearch.aacrjournals.org/content/11/7">http://cancerpreventionresearch.aacrjournals.org/content/11/7</a>. Click on &quot;Request Permissions&quot; which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>