REVIEW

441 A Review of Promising Natural Chemopreventive Agents for Head and Neck Cancer
Kyle Crooker, Rana Aliani, Megha Ananth, Levi Arnold, Shrikant Anant, and Sufi Mary Thomas

RESEARCH ARTICLES

451 Temporal Efficacy of a Sulforaphane-Based Broccoli Sprout Diet in Prevention of Breast Cancer through Modulation of Epigenetic Mechanisms
Yuanyuan Li, Phillip Buckhaults, Shizhao Li, and Trygve Tollefsbol

465 In Vivo Multimodal Optical Imaging: Improved Detection of Oral Dysplasia in Low-Risk Oral Mucosal Lesions

477 Prospective Randomized Biomarker Study of Metformin and Lifestyle Intervention for Prevention in Obese Women at Increased Risk for Endometrial Cancer

491 Predicting the Presence of Oral Squamous Cell Carcinoma Using Commonly Dysregulated MicroRNA in Oral Swirls
Tami Yap, Kendrick Koo, Lesley Cheng, Laura J. Vella, Andrew F. Hill, Eric Reynolds, Alf Nastr, Nicola Cirillo, Christine Seers, and Michael McCullough

503 KLF4 Mediates the Effect of 5-ASA on the β-Catenin Pathway in Colon Cancer Cells
Sandra Parenti, Lucia Montorsi, Sebastian Fantini, Fabiana Mammoli, Claudia Gemelli, Claudio Giacinti Aten, Lorenzo Losi, Chiara Frassineti, Bruno Calabretta, Enrico Tagliafero, Sergio Ferrari, Tommaso Zanocco-Marani, and Alexis Grande

511 DNA Methylation of Telomere-Related Genes and Cancer Risk
Brian T. Joyce, Yinan Zheng, Drew Nannini, Zhou Zhang, Lei Liu, Tao Gao, Masha Kocherginsky, Robert Murphy, Hushan Yang, Chad J. Achenbach, Lewis R. Roberts, Mirjam Hoxha, Jincheng Shen, Pantel Volkoff, Joel Schwartz, Andrea Raccarelli, and Lifang Hou
Oral squamous cell carcinoma (OSCC) is a highly debilitating and often fatal disease. Early detection is key, as early stage OSCC has a favorable prognosis and requires less aggressive treatment. Altered microRNA expression is a potential candidate for a molecular marker which can identify early malignant changes in the absence of clinically evident mucosal alterations. Yap et al. (page 491) aimed to predict the presence of oral squamous cell carcinoma by selecting a panel of OSCC-related dysregulated microRNA identified jointly in data from formalin-fixed paraffin embedded (FFPE) and fresh frozen specimens for study in a novel sample type, oral swirls. Next generation sequencing (NGS) was used to determine microRNA fold changes in FFPE OSCC specimens relative to histologically normal epithelium (RDH-NGS). This data was placed with NGS of fresh frozen tissue data of The Cancer Genome Atlas database (TCGA). The cover shows a heatmap of expression values of TCGA-NGS data of the 29 microRNAs with fold changes greater (blue) or less (gray) than 1 (log2) in common with the RDH-NGS. Hierarchical clustering of samples was performed, with OSCC (n = 292) displayed in black versus normal (n = 30) in red. Delineation of tumor and normal specimens utilizing these 29 candidate microRNAs yielded a sensitivity of 97.9% and specificity of 96.7%.