TABLE OF CONTENTS

SPOTLIGHT
803 How Does Obesity Drive Human Carcinogenesis? Challenges in Dissecting the Mechanisms of Adipose–Epithelial Signaling
Justin Colacino, Zora Djuric, and Dean E. Brenner
See related article, p. 817

COMMENTARY
807 Molecular Mechanism for Breast Cancer Incidence in the Women’s Health Initiative
V. Craig Jordan

RESEARCH ARTICLES
817 Multi-omics Analysis Reveals Adipose–tumor Crosstalk in Patients with Colorectal Cancer
See spotlight article, p. 803

829 A Pooled Analysis to Compare the Clinical Characteristics of Human Papillomavirus-positive and -Negative Cervical Precancers

841 Inflammatory and Insulinemic Dietary Patterns: Influence on Circulating Biomarkers and Prostate Cancer Risk
Desmond Aroke, Edmund Folefac, Ni Shi, Qi Jin, Steven K. Clinton, and Fred K. Tabung

853 Use of Aspirin and Statins in Relation to Inflammation in Benign Prostate Tissue in the Placebo Arm of the Prostate Cancer Prevention Trial

863 Metabolomics Analysis of Aspirin’s Effects in Human Colon Tissue and Associations with Adenoma Risk
Elizabeth L. Barry, Veronika Fedirko, Karan Uppal, Chunyu Ma, Ken Liu, Leila A. Mott, Janet L. Peacock, Michael N. Passarelli, John A. Baron, and Dean P. Jones

877 Effect of Low-dose and Standard-dose Aspirin on PGE2 Biosynthesis Among Individuals with Colorectal Adenomas: A Randomized Clinical Trial
ABOUT THE COVER

Three studies in this issue investigate biomarker modification by aspirin, use of which has been shown to be effective for preventing some cancers. First, in a study beginning on page 853, Hurwitz and colleagues found that aspirin users were more likely to have low levels of FoxP3, a T regulatory cell marker, suggesting that aspirin may alter the immune milieu of the prostate and lower risk of advanced/fatal prostate cancer. Second, in a study beginning on page 863, Barry and colleagues discovered three aspirin-associated metabolic features that might contribute to lower risk of adenoma and colorectal cancer. Last, in a randomized trial beginning on page 877, Drew and colleagues found that aspirin significantly reduced elevated levels of PGE-M in those at increased colorectal cancer risk to levels consistent with lower risk for recurrent neoplasia, suggesting that PGE-M could be used as a precision chemoprevention biomarker. Results from these studies provide evidence to further understand the cancer preventive function of aspirin and to develop precision prevention approaches. The cover image depicts aspirin pills and structure.