Table of Contents

Editorial

493 Immuno-Interception for Patients with High-Risk Cancer
Asad Umar and Holli A. Loomans-Kropp

Research Articles

497 Epigallocatechin Gallate Induces Hepatic Stellate Cell Senescence and Attenuates Development of Hepatocellular Carcinoma
Mozhdeh Sojoodi, Lan Wei, Derek J. Erstad, Suguru Yamada, Tsutomu Fujii, Hadassa Hirschfield, Rosa S. Kim, Gregory Y. Lauwers, Michael Lanuti, Yujin Hoshida, Kenneth K. Tanabe, and Bryan C. Fuchs

509 External Validation of Risk Prediction Models Incorporating Common Genetic Variants for Incident Colorectal Cancer Using UK Biobank

521 Vitamin D Pathway and Other Related Polymorphisms and Risk of Prostate Cancer: Results from the Prostate Cancer Prevention Trial
Kathleen Torkko, Cathee Till, Catherine M. Tangen, Phyllis J. Goodman, Xiaoling Song, Jeannette M. Schenk, M. Scott Lucia, Ulrike Peters, Adrie van Bokhoven, Ian M. Thompson, and Marian L. Neuhouser

531 Impact of Social Support on Colorectal Cancer Screening among Adult Hispanics/Latinos: A Randomized Community-based Study in Central Pennsylvania

543 Age at Initiation and Frequency of Screening to Prevent Esophageal Squamous Cell Carcinoma in High-risk Regions: an Economic Evaluation
Bin Wu, Zhenhua Wang, and Qiang Zhang

551 Epigenome, Transcriptome, and Protection by Sulforaphane at Different Stages of UVB-Induced Skin Carcinogenesis
Shanyi Li, Yuqing Yang, Davit Sargsyan, Renyi Wu, Ran Yin, Hsiao-Chen Kuo, Irene Yang, Lujing Wang, David Cheng, Christina N. Ramirez, Rasika Hudlikar, Yaoping Lu, and Ah-Ng Kong
ABOUT THE COVER

Green tea is a popular beverage in East Asia that is gaining popularity as a health-promoting natural product in the Western world. It is a rich source of natural polyphenols, among which epigallocatechin gallate (EGCG) is the most abundant. In this issue, Sojoodi et al. investigated the impact of EGCG on hepatocellular carcinoma (HCC) development and found a novel mechanism of EGCG-mediated chemoprevention (see the study beginning on page 497). Chronic liver injury leads to fibrosis, which can progress to cirrhosis — a major risk factor for HCC. Fibrosis results from the transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts, which deposit extracellular matrix and recruit immune cells to sites of injury. In cell culture and animal models, EGCG promoted senescence of HSCs, which in turn attenuated the progression of fibrosis to cirrhosis and ultimately prevented development of HCC. These results provide preclinical evidence that consumption of green tea or EGCG is a potentially safe and inexpensive HCC chemopreventive strategy. The image on the cover depicts immunofluorescent staining of liver tissue for α-smooth muscle actin (red) and proliferating cell nuclear antigen (green) to identify activated HSCs, which were significantly decreased in the animals receiving EGCG in their drinking water.