Table of Contents

Commentary

563 Intercepting Endometrial Cancer: Opportunities to Expand Access Using New Technology
Christopher C. DeStephano, Jamie N. Bakkum-Gamez, Andrew M. Kaunitz, Jennifer L. Ridgeway, and Mark E. Sherman

Research Articles

569 Inhibition of miR-21 Regulates Mutant KRAS Effector Pathways and Intercepts Pancreatic Ductal Adenocarcinoma Development

583 Participatory Design of a Personalized Genetic Risk Tool to Promote Behavioral Health
Alex T. Ramsey, Michael Bray, Penina Acayo Laker, Jessica L. Bourdon, Amelia Dorsey, Maia Zalik, Amanda Pietka, Patricia Salyer, Erika A. Waters, Li-Shiun Chen, and Laura J. Bierut

593 Reasons for Not Attending Cervical Cancer Screening and Associated Factors in Rural Ethiopia
Muluken Gizaw, Brhanu Tekla, Friederike Ruddies, Konjit Kassahun, Dawit Worku, Alemayehu Worku, Andreas Wienke, Rafael Mikolajczyk, Ahmedin Jemal, Andreas M. Kaufmann, Tamrat Abebe, Adamu Addisie, and Eva Johanna Kantelhardt

601 Dietary Advanced Glycation End-products (AGE) and Risk of Breast Cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO)
Omonofua O. Omofuma, David P. Turner, Lindsay L. Peterson, Anwar T. Merchant, Jiajia Zhang, and Susan E. Steck

611 Physical Activity and Long-term Quality of Life among Colorectal Cancer Survivors—A Population-based Prospective Study

623 Randomized Phase IIB Trial of the Lignan Secoisolariciresinol Diglucoside in Premenopausal Women at Increased Risk for Development of Breast Cancer

[AC icon indicates AuthorChoice]
For more information please visit www.aacrjournals.org
ABOUT THE COVER

MicroRNA (miRNA) dysregulation in pancreatic ductal adenocarcinoma (PDA) has been reported but not previously profiled during PDA tumorigenesis. Chu and colleagues (in a study beginning on page 569) identified miRNA-21 (miR-21) overexpression in pre-malignant and PDA lesions and demonstrated regulation of pro-tumorigenic effector pathways including MAPK, mTOR and actin cytoskeleton pathways downstream of mutant KRAS. Early systemic miR-21 inhibition in vivo completely intercepted premalignant progression in the early pancreatic intraepithelial neoplasia (PanIN) stage. The cover art demonstrates miRNA-21 expression in PDA using a fluorescence in situ hybridization assay. Expression of miR-21 is concentrated in ductal epithelial cells and becomes increasingly expressed with neoplastic progression from PanINs to PDA (miR-21 expression in epithelial ducts in green and DAPI in the nucleus in blue). miR-21 may be useful for identifying and intercepting developing PDA and other KRAS-driven cancers.
Cancer Prevention Research

13 (7)

Updated version Access the most recent version of this article at:
http://cancerpreventionresearch.aacrjournals.org/content/13/7

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerpreventionresearch.aacrjournals.org/content/13/7.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.