Historical Perspective

Cancer Prevention Research: Back to the Future. Scott M. Lippman ................................................................. 503

Perspective

Epigallocatechin 3-Gallate and Green Tea Catechins: United They Work, Divided They Fail. Ann M. Bode and Zigang Dong .................................................................................................................................................. 514
Perspective on Fu et al., p. 531

Minireview

Molecular Profiles of Finasteride Effects on Prostate Carcinogenesis. Jin Li and Jeri Kim ................................................................. 518

Commentary


Research Articles

Lung Cancer Inhibitory Effect of Epigallocatechin-3-Gallate Is Dependent on Its Presence in a Complex Mixture (Polyphenon E). Huijing Fu, Jun He, Fan Mei, Qi Zhang, Yukihiko Hara, Seto Ryota, Ronald A. Lubet, Ruth Chen, Da-Ren Chen and Ming You ................................................................. 531
Synergistic Growth Inhibition of Squamous Cell Carcinoma of the Head and Neck by Erlotinib and Epigallocatechin-3-Gallate: The Role of p53-Dependent Inhibition of Nuclear Factor-κB. A.R.M. Ruhul Amin, Fadlo R. Khuri, Zhuo (Georgia) Chen and Dong M. Shin ................................................................. 538
Modulation by Phenethyl Isothiocyanate and Budesonide of Molecular and Histopathologic Alterations Induced by Environmental Cigarette Smoke in Mice. Francesco D’Agostini, Luca Mastracci, Alberto Izzotti, Roumen Balansky, Tanya M. Pennisi, Vernon E. Steele and Silvio De Flora ................................................................................................................................. 546
3,3′-Diindolylmethane Induction of p75NTR-Dependent Cell Death via the p38 Mitogen-Activated Protein Kinase Pathway in Prostate Cancer Cells. Fatima S. Khwaja, Shehla Wynne, Isadora Posey and Daniel Djakiew ................................................................. 566
A Novel Sulindac Derivative That Does Not Inhibit Cyclooxygenases but Inhibits Colon Tumor Cell Growth and Induces Apoptosis with Antitumor Activity. Gary A. Piazza, Adam B. Keeton, Heather N. Tinsley, Bernard D. Gary, Jason D. Whitt, Bini Mathew, Jose Thaiparambil, Lori Coward, Gregory Gorman, Yonghe Li, Brahma Sani, Judith V. Hobbath, Yulia Y. Maxuitenko and Robert C. Reynolds ................................................................. 572
3,3′-Diindolylmethane Enhances the Efficacy of Butyrate in Colon Cancer Prevention through Down-Regulation of Survivin. Namrata Bhatnagar, Xia Li, Yue Chen, Xudong Zhou, Scott H. Garrett and Bin Guo ................................................................. 581
About the Cover

The cover features a 3-dimensional graph of the distribution of the sizes of particles of polyphenon E (Poly E), a mixture of epigallocatechin 3-gallate (EGCG) and at least four other catechins found in green tea. Poly E is the form of green tea commonly used in clinical trials. The particle sizes of Poly E (blue bars) and Poly E stripped of EGCG, or Poly E-light (gray bars), are virtually the same, with a geometric median diameter of 0.13 μm and geometric standard deviation of 1.6 μm. The 0.13 μm diameter of Poly E is many times smaller than any other reported to date, optimizing its aerosolized delivery to and absorption by lung tissue. As reported in this issue of the journal, aerosolized Poly E was more effective than was aerosolized Poly E-light (or EGCG alone) in reducing tumor multiplicity in a model of chemically induced mouse-lung tumorigenesis. The difference in efficacy between Poly E and Poly E-light most likely was due to differences in biological, not physical, properties since the particle sizes of the two compounds were similar. See articles by Fu et al. (beginning on page 531) and Bode and Dong (beginning on page 514) for more information.