1505 Linking Epidemiology to Epigenomics—Where Are We Today? Cornelia M. Ulrich and William M. Grady
See article p. 1552

1509 Viewing the Epigenetics of Colorectal Cancer through the Window of Folic Acid Effects
Manon van Engeland and James G. Herman
See article p. 1552

1513 Cyclin E Transgenic Mice: Discovery Tools for Lung Cancer Biology, Therapy, and Prevention
Sarah J. Freemantle and Ethan Dmitrovsky

1519 Chitin or Chitin-Like Glycans as Targets for Late-Term Cancer Chemoprevention
Lee W. Wattenberg, Steven Patterson, and Jennifer D. Antonides

1523 Transition of a Clinical Trial into Translational Research: The Prostate Cancer Prevention Trial Experience

1534 A Mouse Model for Human Anal Cancer
Marie K. Stelzer, Henry C. Pitot, Amy Liem, Johannes Schweizer, Charles Mahoney, and Paul F. Lambert

1542 Rapamycin Inhibits Anal Carcinogenesis in 2 Preclinical Animal Models
Marie K. Stelzer, Henry C. Pitot, Amy Liem, Denis Lee, Gregory D. Kennedy, and Paul F. Lambert

1552 Association between Folate Levels and CpG Island Hypermethylation in Normal Colorectal Mucosa
Kristin Wallace, Maria V. Grau, A. Joan Levine, Lanlan Shen, Randala Hamdan, Xinli Chen, Jiang Gui, Robert W. Haile, Elizabeth L. Barry, Dennis Ahnen, Gail McKeown-Eyssen, John A. Baron, and Jean Pierre J. Issa
See perspectives p. 1505 and p. 1509

1565 A Pilot, First-in-Human, Pharmacokinetic Study of 9cUAB30 in Healthy Volunteers
Jill M. Kolesar, Ryan Hoel, Marcia Pomplun, Tom Havighurst, Jeanne Stublaski, Barbara Wollmer, Helen Krontiras, Wayne Brouillette, Donald Muccio, KyungMann Kim, Clinton J. Grubbs, and Howard E. Bailey

1571 A Panel of Sputum-Based Genomic Marker for Early Detection of Lung Cancer
Feng Jiang, Nevins W. Todd, Ruiyun Li, Howard Zhang, HongBin Fang, and Sanford A. Stass

1579 Prevalence of BRCA1 and BRCA2 Mutations in Women with Breast Carcinoma In Situ and Referred for Genetic Testing
Michael J. Hall, Julia E. Reid, and Richard J. Wenstrup

1586 Curcumin Inhibits Carcinogen and Nicotine-Induced Mammalian Target of Rapamycin Pathway Activation in Head and Neck Squamous Cell Carcinoma
Cheryl A. Clark, Matthew D. McEachern, Shivang H. Shah, Youhua Rong, Xiaohua Rong, Christopher L. Smelley, Gloria C. Caldito, Fleurette W. Abreo, and C.O. Nathan
A Vitamin D Receptor-Alkylation Derivative of 1α,25-Dihydroxyvitamin D₃ Inhibits Growth of Human Kidney Cancer Cells and Suppresses Tumor Growth

Body Size and Incident Colorectal Cancer: A Prospective Study of Older Women

Proanthocyanidins Inhibit Photocarcinogenesis through Enhancement of DNA Repair and Xeroderma Pigmentosum Group A–Dependent Mechanism
Mudit Vaid, Som D. Sharma, and Santosh K. Katiyar

MEETING REPORT
Ann M. Bode, Ya Cao, and Zigang Dong

Acknowledgment to Reviewers

ABOUT THE COVER
The cover features a three-color, fluorescence image of a human papillomavirus 16 (HPV16) positive human anal cancer stained with antibodies to p16 (red), a biomarker for HPV-positive cancers, and phosphorylated S6 (green), a marker for activated mammalian target of rapamycin (mTOR) pathway. Nuclei were counterstained with 4',6-diamidino-2-phenylindole (DAPI, blue). The individual color images (200X magnification) were taken using a Zeiss Apotome Fluorescent microscope and merged. This image relates to two articles by Stelzer et al. in this issue of the journal (beginning on page 1534 and page 1542) that describe mouse models for human anal cancer and their use in testing the activity of rapamycin.