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Lipoxygenases (LOX) are key enzymes for the oxidative metabolism of polyunsaturated fatty acids into
biologically active products. Clinical data on comparative levels of various LOX products in tumorigenesis
are lacking. Therefore, we examined the profiles of several LOX products (5-LOX, 12-LOX, 15-LOX-1, and
15-LOX-2) by liquid chromatography/tandem mass spectrometry in the major steps of colorectal tumori-
genesis (normal, polyp, and cancer) in a clinical study of 125 subjects (49 with normal colon, 36 with co-
lorectal polyps, and 40with colorectal cancer) who underwent prospective colorectal biopsies to control for
various potential confounding factors (e.g., diet, medications). Mean 13-hydroxyoctadecadienoic acid
(13-HODE) levels were significantly higher in normal colon [mean, 36.11 ng/mg protein; 95% confidence
interval (95% CI), 31.56-40.67] than in paired colorectal cancer mucosa (mean, 27.01 ng/mg protein; 95%
CI, 22.00-32.02; P = 0.0002), and in normal colon (mean, 37.15 ng/mg protein; 95%CI, 31.95-42.34) than
in paired colorectal polyp mucosa (mean, 28.07 ng/mg protein; 95% CI, 23.66-32.48; P < 0.001). Mean
13-HODE levels, however, were similar between the left (mean, 37.15 ng/mg protein; 95%CI, 31.95-42.35)
and the right normal colon (mean, 32.46 ng/mg protein; 95% CI, 27.95-36.98; P = 0.09). No significant
differences with regard to 12- or 15-hydroxyeicosatetraenoic acid or leukotriene B4 levels were detected be-
tween normal, polyp, and cancer mucosae. 15-LOX-1 inhibited interleukin-1β expression. This study estab-
lishes that reduced 13-HODE levels are a specific alteration in the LOX product profile associated with
human colorectal tumorigenesis. Cancer Prev Res; 3(7); 829–38. ©2010 AACR.
Introduction

Lipoxygenases (LOX) are key enzymes in the oxidative
metabolism of polyunsaturated fatty acids, particularly
arachidonic and linoleic acids, into products that can in-
fluence cell signaling, structure, and metabolism (1). Pre-
clinical and limited clinical data suggest that products of
LOXs, especially of 5-LOX, 12-LOX, 15-LOX-1, and
15-LOX-2, have differential roles in relation to human tu-
morigenesis (2–4). Up to the present, reported compari-
sons between levels of various LOX products in humans
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during different stages of multistep tumorigenesis have
been limited to single LOX products in retrospectively
collected surgical samples primarily from cancer pa-
tients (5–7). These studies were also limited by a lack
of information on potential factors such as the LOX
substrates linoleic and arachidonic acid, nutritional ele-
ments that modulate LOX activity (e.g., calcium, which
is necessary for 15-LOX-1 activation; ref. 8), and med-
ications [e.g., nonsteroidal anti-inflammatory drugs
(NSAID); refs. 7, 9, 10] that could have confounded
LOX product measurements. Furthermore, tumorigene-
sis, especially colorectal tumorigenesis, is a multistep
process (11), and no study reported to date has directly
compared LOX product levels between the different
steps of tumorigenesis.
Mass spectrometry is an emerging technology that al-

lows sensitive, specific, and simultaneous measurements
of various LOX products and thus provides a LOX product
profile of human tissues (12–14). The current clinical
study examined the LOX product profile of each major
step of colonic tumorigenesis, from normal colons/
rectums to polyps to cancer, in prospectively collected
biopsy samples of colonic mucosa, which allowed us to
control for potential confounding factors.
829

search. 
on October 27, 2021. © 2010 American Associationg 

http://cancerpreventionresearch.aacrjournals.org/


10 Food Frequency Data Entry and Analysis Program (FFDEAP) [computer
program]. Version 2.0. Houston, TX: The University of Texas Health Science
Center at Houston, School of Public Health; 1995.
11 Food Intake Analysis System (FIAS) [computer program]. Version 3.0.
Houston, TX: The University of Texas Health Science Center at Houston,
School of Public Health; 1996.

Shureiqi et al.

830

Published OnlineFirst June 22, 2010; DOI: 10.1158/1940-6207.CAPR-09-0110 
Materials and Methods

Clinical samples
Colonic biopsy specimens were collected during colorec-

tal endoscopic procedures after obtaining written informed
consent from participating patients. Study patients were se-
lected from among patients seen at outpatient gastrointes-
tinal clinics at The University of Texas M.D. Anderson
Cancer Center and other hospitals within the Texas Medical
Center (Gastroenterology Section at Baylor College of
Medicine, an outpatient gastrointestinal endoscopy unit
affiliated with St. Luke's Hospital, and the Michael E.
DeBakey VA Medical Center) for colorectal cancer screen-
ing and for the follow-up and management of colorectal
cancers. This study was approved by the institutional
review board at each participating institution.
Our study involved a total of 125 patients divided into

three groups: 49 subjects with normal colon, 36with colon-
ic polyps, and 40 with colorectal cancer. The colorectal can-
cer group patients' biopsies were obtained from colorectal
cancers and from normal-appearing mucosa at least 10 cm
from the cancer. The colorectal polyp group included pa-
tients with no history of colorectal cancer. Biopsies were
obtained from the colorectal polyps and from normal-
appearing mucosa at least 10 cm form the polyp. The
normal-colon group included patients with no history of
colorectal cancer or polyps and who had a normal colono-
scopic examination at the time of biopsy. In this normal-
colon group, two sets of biopsies of the colonicmucosawere
obtained, one from the left and one from the right colon.
Subjects in all groups were between 45 and 85 years old,

had no history of hereditary colon cancer (familial colorec-
tal polyposis syndrome, hereditary nonpolyposis colon
cancer syndrome, or family history of one or more first-
degree relatives with colon cancer), and were U.S. citizens
or permanent residents (to reduce the potential for large
variability in risk factors such as dietary habits if interna-
tional patients were included; refs. 15, 16). Patients were
excluded if they had a history of inflammatory bowel dis-
ease, had received chemotherapy within 4 weeks before the
colonoscopy, had participated in a chemopreventive study
during the month before the colonoscopy, had a history of
bleeding diathesis, had a history of another active cancer
within 5 years before enrollment (except for nonmelanoma
skin cancer), were taking warfarin, or were taking anti-
inflammatory medications (e.g., nonsteroidal agents,
aspirin, sulfasalazine) within 1 week of the colonoscopies.
Biopsies were collected between 2001 and 2006. All tissue
samples were fresh frozen and stored at −80°C until the
time of laboratory analyses.

Liquid chromatography/tandem mass spectrometry
measurements of levels of LOX products
Samples were subjected to extraction similar to proce-

dures previously published (13, 17). Briefly, each frozen
biopsy tissue sample was cut into approximately 1 × 1- to
2-mmstripes. Sampleswere transferred to sealedmicrocentri-
fuge tubes towhich 500μL of ice-cold tissue homogenization
Cancer Prev Res; 3(7) July 2010
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buffer were added (17). The samplewas homogenized by an
Ultrasonic Processor (Misonix) at 0°C for 3.5 minutes × 2
with 1-minute rest in between and then centrifuged at
10,000 rpm for 5 minutes at 4°C. A 400-μL aliquot of the
supernatant was transferred to a glass tube; 600 μL of PBS
buffer [containing 1 mmol/L EDTA and 1% butylated hy-
droxytoluene and 10 μL of deuterated prostaglandin E2; 5-,
12-, or 15-hydroxyeicosatetraenoic acid (5-, 12-, 15-HETE);
leukotriene B4 (LTB4); or 13-hydroxyoctadecadienoic acid
(13-HODE; 1 μg/mL)] were added and samples were acidi-
fied with 0.5 N HCl to pH 3.2 to 3.3. Lipid product was ex-
tracted by adding 2 mL of ethyl acetate and vortexing for
30 seconds followed by centrifugation at 2,000 rpm for
5 minutes at 4°C. The upper organic layer was collected, ex-
traction was repeated for two more times, and the organic
phases from three extractions were pooled and then evapo-
rated to dryness on ice under a stream of nitrogen. Samples
were reconstituted in 100 μL of methanol/ammonium ace-
tate buffer (10 mmol/L at pH 8.5; 70:30, v/v) before liquid
chromatography-tandem mass spectrometry (LC-MS/MS)
analysis. The protein concentration was determined by a
Bradford protein assay (Bio-Rad). LC-MS/MS analyses were
done using a Quattro Ultima tandem mass spectrometer
(Micromass) equipped with an Agilent HP 1100 binary-
pump HPLC inlet as described previously (13).

Measuring intakes of nutritional, mineral, and vitamin
supplements and medications
Dietary intake and alcohol intake were assessed with a

semiquantitative food frequency questionnaire (FFQ).
This 137 item self-administered FFQ elicited usual in-
take over the past 6 months. Martinez et al. have de-
scribed the details of this FFQ and its measurement
characteristics (18). FFQ data were entered into the
Food Frequency Data Entry and Analysis Program10

and analyzed for 49 macronutrients and micronutrients
as well as individual fatty acids using nutrient and gram
weight information from the Food Intake Analysis Sys-
tem11 USDA Survey Nutrient Data Base (U.S. Depart-
ment of Agriculture, Agricultural Research Service.
1997. ON: Nutrient Database for Individual Intake Sur-
veys. 1994-96 Continuing Survey of Food Intakes by In-
dividuals and 1994-96 Diet and Health Knowledge
Survey. CD-ROM). Intakes of hormonal replacement
therapy, vitamins, and other nutritional supplements
were measured by using a medication questionnaire.

RNA extraction and quantitative reverse
transcription-PCR analyses
Total RNA was extracted from cells using TRI reagent

(Molecular Research Center, Inc.; ref. 19). The integrity of
Cancer Prevention Research
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total RNAwas verified on an Agilent 2100 Bioanalyzer using
the RNA 6000Nano LabChip kit (Agilent Technologies). Ex-
tractedmRNA samples of adequate RNAquality (RNA integ-
rity number ≥8) from paired tissues were available from 11
patients with colorectal cancer. RNA was reverse transcribed
and then measured quantitatively by quantitative reverse
transcription-PCR (RT-PCR) using a comparative Ct meth-
od, as described previously (19). Primers and probes for hu-
man interleukin-1β (IL-1β; assay ID: HS00174097_m1),
15-LOX-1 (HS00609608_m1), and human HPRT1
(4326321E; internal control for cell line expression studies)
were purchased from Applied Biosystems. β-Amyloid was
the internal control for human colon tissue samples because
of its similar expression levels in normal and cancer tissues
of the colon (20). β-Amyloid primers (forward primer,
5′-ctcatgccatctttgaccga-3′; reverse primer, 5′-gggcatcaacaggct-
caact-3′) were purchased from Sigma, and the β-amyloid
5′-end FAM-labeled probe (5′-gttcagcctggacgatctccagc-3′)
was purchased from Integrated DNA Technologies.

LoVo colon cancer cell transfection with
adenoviral vectors
LoVo colon cancer cells (directly obtained from the

American Type Culture Collection) were cultured and
transfected with modified 5/3 adenoviral vectors that
express either 15-LOX-1 (Ad-15-LOX-1) or luciferase
(Ad-luciferase) at 200 viral particles per cell as described
previously (21). Transfected cells were harvested at 24
and 48 hours and processed for 15-LOX-1 and IL-1β
mRNA expression measurements by quantitative RT-PCR.

Western blot analyses
As previously described (21), cell lysate proteins were

subjected to Western blot analyses using a solution of rab-
www.aacrjournals.org
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bit polyclonal antibody to human 15-LOX-1 (1:2,000 di-
lution) and IL-1β (1:200; Abcam).

Statistical methods
Fisher's exact tests were used to determine the associa-

tion between the disease status and categorical variables.
ANOVA was used to compare age, body mass index
(BMI), and each of the continuous energy adjusted nutri-
tional variables among three disease statuses. 13-HODE,
12-HETE, and 15-HETE were compared within each group
with paired t test, whereas LTB4 levels were compared
with a sign test because of non-normal distributions sec-
ondary to undetectable levels in large numbers of subjects
in all three disease categories. Continuous nutrient vari-
ables were energy adjusted using a regression method
(22). Multinomial logistic regression analyses were used
to determine the association of disease status and each of
themedication intake and nutritional variables after adjust-
ing gender effect. We performed a one-way ANOVA for
analyses involving single factors andmore than two groups.

Results

Clinical characteristics of the study population
The three diseases groups had no significant differences

in age or ethnic background (Table 1). Gender distribution
was significantly different among the three groups, with the
proportion of male to female patients markedly higher in
the polyp disease group as compared with the normal or
cancer group (Table 1). This difference resulted from the
high number of polyp patients recruited through the
Michael E.DeBakey VAMedical Center. BMIwas significant-
ly higher in the polyp group as compared with the cancer
group, a difference possibly explained by secondary weight
Table 1. Demographic characteristics and colon disease status groups
Variable
 Colon disease status
 n
 Mean (SD)
search. 
on Octog 
Median
ber 27, 2021
Min
Cancer P

. © 2010 Ame
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rev Res; 3(7

rican Asso
P*
Age
 Normal
 49
 59.35 (6.70)
 58.00
 50.00
 75.00
 0.16

Polyp
 36
 61.44 (6.56)
 60.50
 50.00
 73.00

Cancer
 40
 62.35 (9.19)
 63.00
 45.00
 80.00
BMI
 Normal
 49
 28.03 (5.97)
 27.12
 19.58
 47.74
 0.008

Polyp
 36
 30.42 (5.71)
 30.75
 19.20
 47.55

Cancer
 40
 26.30 (5.27)
 25.92
 12.40
 38.21
Race
 White
 African American
 Asian
 Hispanic
 0.08

Normal
 43
 5
 1
 0

Polyp
 30
 2
 0
 4

Cancer
 29
 4
 2
 5
Gender
 Male
 Female
 <0.0001

Normal
 18
 31

Polyp
 31
 5

Cancer
 23
 17
*P values by one-way ANOVA for age and BMI and by Fisher's exact test for race and gender. All statistical tests were two-sided.
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loss because of cancer. Medication intake including NSAIDs
was similar among the three groups (Table 2). Nutrient in-
take with or without energy adjustment was not statistically
different between the disease groups (Table 3). In the mul-
tinomial logistic regression analyses with gender adjust-
ment, the only significant association found between
medication and nutritional intake variables and disease sta-
tus had a higher odds ratio of developing polyp than cancer
for the subject taking NSAIDs (odds ratio, 4.81; P = 0.014).

LOX metabolism in normal and cancer mucosae of
colorectal cancer patients
13-HODE mean levels were significantly higher in nor-

mal [mean, 36.11 ng/mg protein; 95% confidence interval
(95% CI), 31.56-40.67 ng/mg protein] than in cancer mu-
cosa (mean, 27.01 ng/mg protein; 95%CI, 22.00-32.02 ng/
mg protein; P = 0.0002; Fig. 1A). The ratio of normal to can-
cer mucosa was less than 1 in 31 of 40 (78%) subjects
(mean cancer to normal ratio, 0.8; 95% CI, 0.68-0.91). In
contrast, 15-HETE levels were similar between normal
(mean, 6.21; 95% CI, 4.61-7.82) and cancerous mucosa
(mean, 5.93; 95%CI, 4.18-7.68; P = 0.58; Fig. 1B). 12-HETE
levels were similar between normal (mean, 2.71; 95% CI,
1.91-3.52) and cancerous mucosa (mean, 2.79; 95% CI,
1.97-3.61; P = 0.82; Fig. 1C). LTB4 levels were below detect-
able levels in normal mucosa in 27 of 39 (69%) and in can-
cerous mucosa in 24 of 39 (62%) of subjects. The levels in
Cancer Prev Res; 3(7) July 2010
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subjects with detectable LTB4 levels were low and similar
between normal (mean, 0.24; 95% CI, 0.06-0.43 ng/mg
protein) and cancerous mucosa (mean, 0.4; 95% CI, 0.14-
0.65 ng/mg protein; P = 0.5; Fig. 1D).
se
g 
Table 2. Comparison of medication intake
among the colon disease status groups
Variables
arch. 
on October 27
Disease group
Cancer Prevention Res

, 2021. © 2010 American Associat
P*
Normal
 Polyp
 Cancer
Cholesterol medication
 0.37

No
 40
 27
 35

Yes
 9
 9
 5
Cardiac medication
 0.34

No
 25
 13
 20

Yes
 24
 23
 20
Other medications
 0.48

No
 15
 14
 17

Yes
 34
 22
 23
NSAIDs
 0.09

No
 37
 24
 35

Yes
 12
 12
 5
*P values by Fisher's exact test; all statistical tests were
two-sided.
Fig. 1. LOX product levels in subjects with colorectal cancer. Biopsies of paired normal and cancer mucosae were analyzed for 13-HODE (A), 15-HETE (B),
12-HETE (C), and LTB4 (D) by LC-MS/MS. Values from each subject are depicted in the dot plots. Lines represent the mean values for groups.
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LOX metabolism in normal and polyp mucosae of
colorectal polyp patients
13-HODE mean levels were significantly higher in nor-

mal (mean, 37.15; 95% CI, 31.95-42.34 ng/mg protein)
than in polyp mucosa (mean, 28.07; 95% CI, 23.66-
32.48; P < 0.001; Fig. 2A). The ratio of normal to polyp
mucosa was less than 1 in 28 of 36 (78%) subjects (mean
polyp to normal ratio, 0.79; 95% CI, 0.69-0.90). In con-
trast, 15-HETE levels were similar between normal (mean,
6.75; 95% CI, 4.98-8.53) and polyp mucosa (mean, 6.00;
95% CI, 4.72-7.29; P = 0.35; Fig. 2B). 12-HETE levels were
similar between normal (mean, 2.44; 95% CI, 1.8-3.09)
and polyp mucosa (mean, 2.58; 95% CI, 1.86-3.29; P =
www.aacrjournals.org
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0.73; Fig. 2C). LTB4 levels were below detectable levels
in normal mucosa in 25 of 37 (68%) and in polyp mucosa
in 24 of 37 (65%) of subjects. The levels in subjects with
detectable LTB4 levels were low and similar between nor-
mal (mean, 0.34; 95% CI, 0.14-0.55 ng/mg protein) and
polyp mucosa (mean, 0.26; 95% CI, 0.11-0.41 ng/mg pro-
tein; P = 0.3; Fig. 2D).

LOX metabolism in the colonic mucosae of subjects
with normal colons
13-HODE mean levels were not significantly different

between the left (mean, 37.15; 95% CI, 31.95-42.35)
and the right normal colonic mucosa (mean, 32.46; 95%
Table 3. Energy-adjusted nutrient intake by disease group
Covariable
 Disease group
 n
 Mean (SD)
search. 
on Octoberg 
Median
 27, 2021. ©
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ican Associat
P*
Adj_Saturated_Fat (g)
 Normal
 49
 25.30 (6.13)
 25.52
 9.66
 53.92
 0.34

Polyp
 36
 26.10 (5.53)
 26.20
 15.59
 41.71

Cancer
 40
 24.17 (5.42)
 24.71
 12.20
 40.26
Adj_Polyunsat_Fat (g)
 Normal
 49
 16.39 (5.04)
 16.91
 −6.90
 28.13
 0.59

Polyp
 36
 17.34 (5.14)
 16.35
 0.05
 29.78

Cancer
 40
 16.40 (3.84)
 16.80
 3.45
 24.14
Adj_Monounsat_Fat (g)
 Normal
 49
 28.69 (5.81)
 28.81
 12.15
 46.25
 0.42

Polyp
 36
 29.87 (6.29)
 29.29
 12.97
 42.72

Cancer
 40
 28.17 (5.12)
 29.30
 15.83
 39.44
Adj_Dietary_Fiber (g)
 Normal
 49
 19.96 (6.29)
 19.39
 4.17
 37.50
 0.98

Polyp
 36
 20.16 (5.68)
 18.70
 10.79
 35.60

Cancer
 40
 19.86 (7.00)
 18.57
 3.28
 38.04
Adj_Alcohol (g)
 Normal
 49
 6.34 (11.99)
 2.11
 −3.93
 66.50
 0.22

Polyp
 36
 6.56 (15.92)
 1.89
 −16.13
 77.27

Cancer
 40
 12.95 (27.85)
 2.78
 −4.83
 153.45
Adj_Folate (μg)
 Normal
 49
 469.83 (158.23)
 482.19
 133.07
 829.41
 0.57

Polyp
 36
 506.39 (163.85)
 488.07
 151.22
 971.62

Cancer
 40
 483.58 (149.11)
 497.22
 41.88
 861.31
Adj_Calcium (mg)
 Normal
 49
 974.83 (461.02)
 868.60
 515.94
 3153.33
 0.37

Polyp
 36
 852.13 (312.79)
 834.35
 301.46
 2104.49

Cancer
 40
 903.12 (390.26)
 853.44
 10.49
 2118.69
Adj_Linoleic (g)
 Normal
 49
 14.49 (4.56)
 14.97
 −7.07
 24.66
 0.61

Polyp
 36
 15.36 (4.68)
 14.52
 −0.88
 26.35

Cancer
 40
 14.55 (3.43)
 14.89
 2.93
 21.15
Adj_Arachidonic (g)
 Normal
 49
 0.14 (0.09)
 0.15
 −0.11
 0.32
 0.43

Polyp
 36
 0.16 (0.10)
 0.15
 −0.09
 0.48

Cancer
 40
 0.14 (0.07)
 0.16
 −0.04
 0.28
Adj_Linolenic (g)
 Normal
 49
 1.47 (0.40)
 1.46
 0.17
 2.74
 0.64

Polyp
 36
 1.54 (0.43)
 1.46
 0.83
 2.77

Cancer
 40
 1.46 (0.38)
 1.48
 0.20
 2.54
Adj_EPA (g)
 Normal
 49
 0.03 (0.03)
 0.03
 −0.02
 0.16
 0.99

Polyp
 36
 0.03 (0.03)
 0.03
 −0.01
 0.12

Cancer
 40
 0.03 (0.02)
 0.03
 −0.02
 0.08
Adj_DHA (g)
 Normal
 49
 0.09 (0.07)
 0.10
 −0.07
 0.29
 0.97

Polyp
 36
 0.09 (0.07)
 0.08
 −0.06
 0.27

Cancer
 40
 0.09 (0.05)
 0.09
 −0.05
 0.20
*P values by one-way ANOVA; all statistical tests were two-sided.
ly 2010 833
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CI, 27.95-36.98; P = 0.09; Fig. 3A). 15-HETE levels were
also similar between the left (mean, 8.23; 95% CI, 6.85-
9.61) and the right normal colonic mucosa (mean, 7.87;
95% CI, 6.6-9.15; P = 0.6053; Fig. 3B). 12-HETE levels
were similar between the left (mean, 3.37; 95% CI, 2.32-
4.43) and the right normal colonic mucosa (mean, 3.06;
95% CI, 2.23-3.9; P = 0.6154; Fig. 3C). LTB4 levels were
below detectable levels in left normal colonic mucosa in
29 of 49 (59%) and in right normal colonic mucosa in
30 of 49 (61%) of subjects. The levels in subjects with de-
tectable LTB4 levels were low and similar between the left
(mean, 0.53; 95% CI, 0.29-0.77 ng/mg protein) and can-
cerous mucosa (mean, 0.64; 95% CI, 0.07-0.1.21 ng/mg
protein; P = 0.44; Fig. 3D).

IL-1β and 15-LOX-1 in human colonic tumorigenesis
Among the 11 patients with evaluable mRNA, 15-LOX-1

relative mRNA expression levels were lower in cancer than
in paired normal mucosa in 10 patients and were equal in
1 patient (mean cancer-to-normal ratio, 0.18; 95% CI,
0.09-0.39; Fig. 4A; P = 0.0014). In contrast, IL-1β relative
mRNA levels were higher in 9 of these 11 patients (mean
cancer-to-normal ratio, 4.34; 95% CI, 1.98-9.48; Fig. 4B;
P = 0.0043); the ratios were 0.94 and 0.85 in the other
two cases. In LoVo colon cancer cells, Ad-15-LOX-1 viral
vector induced 15-LOX-1 expression (P < 0.0001; Fig. 4C),
Cancer Prev Res; 3(7) July 2010
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which reduced IL-1β mRNA expression by >50% [versus
control (Ad-luciferase); P = 0.014; Fig. 4D] and IL-1β pro-
tein expression (Fig. 4E).

Discussion

This study indicates (a) that a reduced level of 13-HODE
is a specific alteration in the LOX product profiles of human
colorectal polyps and cancer (versus normal colorectal mu-
cosa) and (b) that 13-HODE is the predominant compo-
nent of the LOX product profiles of colorectal normal,
polyp, and cancer mucosae.
The reduced 13-HODE level in polyps or cancer was as-

sociated with levels of 12-HETE, 15-HETE, or LTB4, which
did not differ significantly between polyps or cancer and
normal mucosa. 13-HODE was the predominant LOX
product in colonic mucosa, with levels that were several-
fold higher in normal, polyp, and cancer patients than the
levels of the other LOX products (15-HETE, 12-HETE, and
LTB4). We selected 13-HODE, 12-HETE, 15-HETE, and
LTB4 for measurements in the current study because prior
reports support their key roles in tumorigenesis (2). This
reduction in 13-HODE establishes the clinical relevance of
prior preclinical data showing that the expression of
15-LOX-1, the key enzyme for 13-HODE production, is
lost in colorectal cancer cells (6, 23, 24), and 15-LOX-1
Fig. 2. LOX product levels in subjects with colorectal polyps. Biopsies of paired normal and polyp mucosae were analyzed for 13-HODE (A), 15-HETE (B),
12-HETE (C), and LTB4 (D) by LC-MS/MS. Values from each subject are depicted in the dot plots. Lines represent the mean values for groups.
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reexpression by antitumorigenic agents such as NSAIDs
and histone deacetylase inhibitors, or by adenoviral deliv-
ery vectors, inhibits tumorigenesis (9, 10, 12, 21, 25–29).
The findings of reduced 13-HODE in colorectal polyps
and cancer are consistent with prior reports of 15-LOX-1
downregulation in clinical samples of surgically resected
colorectal cancer (6, 7, 30, 31), colorectal polyps (7, 31),
and adenomas from a small cohort of familial adenoma-
tous polyposis (FAP) patients (n = 5; ref. 12). More impor-
tantly, however, the current study is the first to
comprehensively examine the full profile of LOX pathways
(5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2) in sporadic
colorectal polyps and cancer and to show the relative sig-
nificance of 15-LOX-1 downregulation to colonic tumori-
genesis compared with other LOX pathways. Our very
sensitive and specific mass spectrometry methods (12,
13) allowed these simultaneous LOX product measure-
ments and, thus, direct comparisons between them. Prior
studies were mostly limited to measuring individual LOX
pathways (2, 5–7), and it is difficult to compare various
product levels between different studies because of impor-
tant interstudy differences. The one exception to these in-
dividual LOX studies was a very small retrospective study
of various LOX profiles in five FAP patients (12). Although
the present results agree with those of the prior FAP study
www.aacrjournals.org
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findings (12), they provide indispensable confirmation
from a much larger study in patients with far more com-
mon sporadic colorectal polyps and cancer. Furthermore,
the LOX product profiles, including 13-HODE levels, of
normal mucosa in subjects without colonic polyps or can-
cer were unknown before the current study.
The current clinical study is the first prospective analysis

of colonic biopsy samples of normal, polyp, or colorectal
cancer mucosae collected via the same methods, and the
first analysis to adjust for the effects of factors including di-
etary intake (e.g., of linoleic and arachidonic acid and cal-
cium) and other factors (e.g., NSAID use) known to be
potential confounders of measurements of the LOX pro-
duct profile. In contrast, prior studies were limited by a lack
of information about important confounding factors that
can influence 13-HODE levels (e.g., NSAIDs and intake of
linoleic acid) and questions about the generalizability of
data from FAP and the generally advanced stage of the sur-
gically resected sporadic polyps (average diameter of 3 cm;
ref. 7). After we adjusted for these potential confounding
factors, the 13-HODE level was still lower in polyps and
cancer than in paired normal mucosa and colorectal muco-
sa from subjects with normal colons (Supplementary
Fig. S1). Therefore, the reduction in 13-HODE levels was
unlikely secondary to lower availability of substrate levels
Fig. 3. LOX product levels in subjects with normal colons. Paired left and right colonic mucosal biopsies were analyzed for 13-HODE (A), 15-HETE (B),
12-HETE (C), and LTB4 (D) by LC-MS/MS. Values from each subject are depicted in the dot plots. Lines represent the mean values for groups.
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of linoleic acid and more likely was secondary to down-
regulated 15-LOX-1 expression (refs. 6, 7, 24, 30, 31 and
current report; Fig. 4A). Reduced 13-HODE in the present
study also was unrelated to a familial or hereditary syn-
drome because such patients were excluded. Furthermore,
the reduced 13-HODE level was unrelated to variability in
colonic biopsy sites because 13-HODE levels were similar
in the right and left sides of normal colons in this study.
Linoleic acid is thought to be the most abundant poly-

unsaturated fatty acid in western diets (32). The current
study confirmed this notion in finding that the dietary in-
take of linoleic acid was higher than that of arachidonic
and other polyunsaturated fatty acids. Therefore, the pre-
dominance of 13-HODE, which is the main oxidative
Cancer Prev Res; 3(7) July 2010
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product of linoleic acid, over 12-HETE and 15-HETE and
LTB4, which are products of arachidonic acid, is possibly
related to substrate availability. Further studies in other
human organs will help to determine whether the profile
of LOX products is organ specific. The current study used
undissected colorectal biopsies, which likely contained
variable proportions of epithelial and subepithelial tis-
sues. Although variable proportions of epithelial and sub-
epithelial tissues may have influenced LOX product
measurements, both subepithelial and epithelial tissues
are thought to contribute to polyunsaturated fatty acid
oxidative metabolism (33). Future studies potentially
should examine the contribution of each compartment
to LOX product levels.
Fig. 4. Effect of 15-LOX-1 on IL-1β expression in colorectal cancer. A and B, expression of 15-LOX-1 and IL-1β in human colonic tumor and normal mucosa.
15-LOX-1 (A) and IL-1β (B) mRNA expression levels were measured by quantitative RT-PCR in paired colonic normal and tumor mucosa samples from
colorectal cancer patients. Each value depicts the mean of triplicate measurements from each subject. Lines represent group mean values. C and D, effects
of 15-LOX-1 expression on IL-1β expression in colon cancer cells. LoVo colon cancer cells were transfected with either a 15-LOX-1 adenoviral vector
that expresses 15-LOX-1 (Ad-15-LOX-1) or with the same vector but replacing 15-LOX-1 cDNA with luciferase cDNA (Ad-luciferase; control vector). C, cells
were harvested 24 h after transfection and 15-LOX-1 was measured by quantitative RT-PCR. D, cells were harvested 48 h after transfection, and IL-1β
mRNA was measured by quantitative real-time PCR. Values are mean ± SD of triplicate experiments (*, P < 0.0001; **, P = 0.014, ANOVA). E, cell lysates
were collected 48 h after transfection and were processed for 15-LOX-1 and IL-1β protein expression. +, a positive control for 15-LOX-1.
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Emerging data increasingly support a mechanistic link
between inflammation and cancer (34), especially in the
case of colonic tumorigenesis (35). IL-1β is a major proin-
flammatory cytokine that contributes to the pathogenesis
of human colitis (36) and tumorigenesis (37–40). Based
on prior reports suggesting anti-inflammatory effects for
15-LOX-1 (41, 42), we examined the relationship between
15-LOX-1 and IL-1β. Our results showed for the first time
the relationship between 15-LOX-1 downregulation and
IL-1β upregulation in human colon cancer. Our in vitro
studies of 15-LOX-1 expression in human LoVo colon cancer
cells show themechanistic significance of this association, as
15-LOX-1 expression downregulated IL-1β expression in hu-
man colon cancer cells in vitro. These findings further support
the proposed anti-inflammatory and antitumorigenic roles
of 15-LOX-1 in colorectal carcinogenesis.
The current study shows that the LOX product profile

can be detected in biopsies of colonic mucosa and that a
reduced 13-HODE level is a specific alteration in the LOX
product profiles of colorectal polyp and cancer mucosae.
We believe that these results support future study of the
utility of altered 13-HODE as a biomarker of colorectal
www.aacrjournals.org
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tumorigenesis and of the effects of molecular-targeted
approaches to preserve 15-LOX-1 expression for colorectal
cancer chemoprevention.
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