




was filtered to identify genes exhibiting 2-fold or greater
changes in gene expression.

Network and gene ontology analysis
Selected genes were investigated for network and gene

functional interrelation by Ingenuity Pathways Analysis
(IPA) software (Ingenuity Systems, www.ingenuity.com;
ref. 12). IPA scans the set of input genes to identify networks
byusing IngenuityPathwaysKnowledgeBase for interactions
between identified "Focus Genes," in our case, the common
genes identified from our pathways approach and known
and hypothetical interacting genes stored in the knowledge
base in IPA software, to generate a set of networks with a
maximum network size of 35 genes/proteins. Networks are
displayed graphically as genes/gene products ("nodes") with
the biological relationships between the nodes ("edges")
identified. All edges are from canonical information stored
in the Ingenuity Pathways Knowledge Base. In addition, IPA
computes a score for each network according to the fit of the
user’s set of significant genes. The score indicates the like-

lihood of the Focus Genes in a network from the Ingenuity
knowledgebasebeing found togetherdue to randomchance.
A score of 3, as the cutoff for identifying gene networks,
indicates that there is only a 1/1,000 chance that the focus
genes shown in a network are due to random chance. There-
fore, a score of 3 or higher indicates a 99.9% confidence level
to exclude random chance.

TNC-L ELISA
Plasma levels of the predominant isoform of tenascin C

(TNC), TNC-large variant (TNC-L), were determined using
a Human Tenascin-C Large (HMV; FNIII-B) ELISA kit (IBL-
America), which detects the human TNC high-molecular-
weight variant by sandwich ELISA. Samples were diluted
100-fold and then incubated in 96-well ELISA plates pre-
coated with anti-TNC (4C8MS) antibody (Ab) for 1 hour at
37�C. After washing the wells 7 times with wash buffer, a
horseradish peroxidase–conjugated anti-TNC (4F10TT) Ab
was added and incubated for 30 minutes at 4�C. After
washing the wells 9 times with wash buffer, chromogen
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Figure 1. A, schematic flow diagram of functional genomic approach to identify chromosome 3p12 pathway genes. Three expression platforms are
denoted that were screened to identify candidates for validation in plasma as potential pancreatic cancer biomarkers. B, putative gene network
derived from IPA software. Edges are displayed with labels that describe the nature of the relationship between the nodes. The lines between genes
represent known interactions, with solid lines representing direct interactions and dashed lines representing indirect or hypothetical interactions.
Color highlighting (red, upregulation; green, downregulation) indicates pathway-associated genes discovered by this study and nonhighlighted genes are
those identified by IPA.
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was added and incubated at room temperature in dark for
30 minutes. The reaction was stopped by the addition of
stop solutionand the absorbanceat 450nmwasdetermined
using an ELISA plate reader (Spectramax Plus384 Microplate
Reader; Molecular Devices) within 30 minutes of addition
of stop solution, with the correction wavelength set at
540 nm. Results were mean absorbance of duplicate wells.

TFPI ELISA
Plasma tissue factor pathway inhibitor (TFPI) levels were

determined using a commercially available Quantikine
HumanTFPI ELISA kit (DTFP10; R&DSystems, Inc.), which
detects predominantly free TFPI and a very small percentage
of LDL and HDL (low- and high-density lipoprotein)–
bound TFPI by sandwich ELISA. The samples were diluted
200-fold and then incubated along with an assay diluent in
96-well ELISA plates precoated with anti-human TFPI
monoclonal Ab for 2 hours at room temperature. After
washing the wells 4 times with wash buffer, a horseradish
peroxidase–conjugated anti-human TFPI was added and
incubated for 1 hour at room temperature. After washing
the wells 4 times with wash buffer, chromogen with sub-
stratewas added and incubated at room temperature in dark
for 30minutes. The reactionwas stopped by the addition of
stop solutionand the absorbanceat 450nmwasdetermined
using an ELISA plate reader (Spectramax Plus384 Microplate
Reader; Molecular Devices) within 30 minutes of addition
of stop solution, with the correction wavelength set at
540 nm. Results were mean absorbance of duplicate wells.

CA19-9 ELISA
CA19-9 levels were measured in plasma samples (10 mL)

using a commercially available ELISA kit (DRG Interna-
tional Inc.) according to manufacturer’s instructions. Ten
microliters of each sample was incubated along with an
assay buffer in 96-well ELISA plates precoated with murine
monoclonal anti-CA19-9 Ab for 90 minutes at 37�C. After
washing the wells 5 times with wash buffer, a horseradish
peroxidase–conjugated anti-CA19-9 was added and incu-
bated for 90minutes at 37�C.Afterwashing thewells 5 times
with wash buffer, chromogen with substrate was added and
incubated at room temperature in dark for 20 minutes. The
reaction was stopped by the addition of stop solution and
the absorbance at 450 nm was determined using an ELISA
plate reader (Spectramax Plus384 Microplate Reader; Mole-
cular Devices) within 15 minutes of addition of stop solu-
tion. Results were mean absorbance of duplicate wells.

For these experiments, we did not assign predetermined
cutoff values to assess the specificity and sensitivity.

Statistics
Differences in plasma levels between normal and pan-

creatic adenocarcinoma were analyzed using the Student’s
t test. To provide additional statistical rigor, the Mann–
Whitney U test was also used to analyze the difference
between normal and pancreatic adenocarcinoma samples.
Two-sided P < 0.05 values were considered statistically
significant. We constructed receiver operating characteristic

(ROC) curves and calculated the area under the curve
(AUC) to evaluate the specificity and sensitivity of predict-
ing cases and controls by each protein and by the combi-
nation of these proteins. All statistical analyses were done
using the Stata 10.1 (Stata Corporation).

Results

SSH library identifies candidate chromosome 3p12
pathway genes

Three different expression platforms were utilized to
identify genes in the chromosome 3p12 pathway to tumor-
igenesis in pancreatic cancer (schematically illustrated in
Fig. 1A). We previously constructed an SSH library using as
starting materials for library construction, microcell hybrid
clones containing defined fragments of chromosome 3p12
that were either suppressed or unsuppressed for tumori-
gencity following injection of microcell hybrid clones into
athymic nude mice (10). cDNAs differentially expressed
from this SSH library should represent genes up- or down-
regulated by the 3p12 tumor suppressor locus and, there-
fore, represent a 3p12 downstream pathway for biomarker
discovery. From the SSH library, 880 partial cDNAs were
obtained that were differentially expressed between sup-
pressed and unsuppressed hybrids. PCR products were
obtained from 763 clones (87% of the library) and used
as templates for sequencing. A total of 569 of 763 clones
(75%) were identified as subtracted because of the presence
of appropriate adaptors and BLAST searches against the
RefSeq database indicated 117 clones had no matches,
short or poor quality sequence, or chimerism. The remain-
der of the 452 of 763 clones produced 2,297 sequences;
however, a number of duplications were present in the
library. After filtering for redundancy and for only those
sequences with Entrez Gene matches, 507 Entrez Gene
matches were obtained (Supplementary Table S1, Supple-
mentary Appendix).

Expression profiling validates SSH library
To validate differential expression observed in the

sequenced cDNA clones obtained from the SSH library,
we utilized a second expression platform. Following
analysis using the PerfectMatch software, probe sets over-
lapping the 507 Entrez Gene sequences from the SSH
library were identified on a GeneChip U133 plus 2.0 array
(Affymetix, Inc.) and examined for differential expression
by interrogating the array with the starting materials for
construction of the SSH library, i.e., microcell hybrids
containing fragments of 3p used to construct the SSH
library. By screening the same cDNAs identified from
the SSH library on a commercial array, we were able to
directly compare expression profiles across platforms
to identify differentially expressed sequences, which we
subsequently filtered by bioinformatics analyses to iden-
tify those genes with expression differences of 2-fold or
greater. Supplementary Table S2 illustrates the 82-gene
list of chromosome 3p12 pathways genes identified by
this approach.
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Expression analyses of pancreatic tumor/normal
samples provide a third platform to stratify data
To identify those genes of the 82-gene list that were

relevant to pancreatic cancer, we identified probe sets on
a U133A plus 2.0 array corresponding to the 82-gene set
and then interrogated the array with pancreatic tumor/
normal samples. Frozen tumor and adjacent macroscopi-
cally and microscopically normal appearing pancreatic
tissues from the same patient (matched) were obtained
from untreated, retrospective pancreatic adenocarcinoma
samples available from the M. D. Anderson Cancer Center
tumor bank and our collaborator (MLF). The characteristics
of the patients used for this study are presented in Supple-
mentary Table S3. Total RNA from matched tumor/adja-
cent normal samples (8 paired samples) was utilized to
interrogate the array and resultant bioinformatics analysis
done to identify differentially expressed sequences across
all 3 platforms. Bioinformatics analysis involved the stra-
tification of the data set by selecting only those genes from
the 82 gene list that were significantly differentially
expressed across all 3 expression platforms resulting in a
7 gene set (P < 0.05; Table 1). The 7-gene panel [WWTR1
(13, 14), TGFBI (15, 16), TFPI (17, 18), CDC42BPA (19,
20), L1CAM (21, 22), TNC (23, 24), and SEL-1L (25, 26)]
showed at least 2-fold or greater difference in gene expres-
sion and consistently remained as top candidates that were
differentially expressed across 3 platforms. One gene, SEL-
1L, was significantly downregulated in 8 of 8 tumors as
compared with normal adjacent tissue, although the other
6 genes were upregulated. Importantly, 5 of 7 genes had
also been previously published as being differentially
expressed by immunohistochemistry (IHC) in pancreatic
tumor samples. In addition, SEL-1L and TNC were differ-
entially expressed by quantitative RT-PCR in 26 matched
pancreatic tumor/normal samples (P ¼ 0.002 and
P ¼ 0.038, respectively; Supplementary Table S4).
As another validation of our 7-gene biomarker panel, we

conducted in silico analyses of publicly available microarray

data sets from Oncomine (http://www.oncomine.org) to
determine whether the 7 genes identified by our functional
genomic screenwere also found as differentially expressed in
published pancreatic tumor /normal expression screens.
Representative results of an individual data set (27), inwhich
all our genebiomarkers of the 7-genepanel are expressed, are
present in Supplementary Figure S1. Analysis of the biomar-
ker panel showed that the expression of 6 genes (TNC, TFPI,
TGFBI, LICAM, CDC42BPA, and WWTR1) was found to be
significantly upregulated in pancreatic cancer when com-
paredwithnormalpancreatic tissue (SupplementaryFig. S1).
In contrast, SEL-1L was found to be significantly downregu-
lated in pancreatic adenocarcinomas compared with the
normal pancreas (Supplementary Fig. S1). Furthermore,
we also analyzed the expression of our panel in 3 different
expressiondata sets obtained frommicrodissectedpancreatic
tumor/normal samples (28–30). Importantly, although
none of the 3 databases listed all 7 genes as differentially
expressed, subsetsof eachgenebiomarkerof the7-genepanel
were represented in these data sets as well (Supplementary
Figs. S2 andS3). Thus, in silico analyses confirmedour studies
using cross-platform functional approaches, although none
of the previously published compendiums of expression
profiles identified these genes as a panel or studied their
potential asblood-basedpancreatic cancerbiomarkers. Thus,
our functional approach identified a novel panel differen-
tially expressed in multiple data sets that hitherto had not
been studied for blood-based biomarker development.

IPA identifies a single network and migration
signature for 3p pathway genes

To determine the functional relationships among the
7 genes confirmed by our functional genomic pathway
studies, IPA was queried for known or hypothetical inter-
actions among the 7 genes in the panel and also all other
genes in the Ingenuity database. With the exception of
WWTR1/TAZ, which was not present in the IPA database,
all the other 6 genes were used as focus genes for IPA.

Table 1. Seven-gene panel of candidate biomarkers identified from screening across 3 expression
platforms

Symbol Title Major biological functions References

WWTR1/TAZ WW domain containing
transcription regulator 1

Cofactor of transcription, cell migration, EMT 13, 14

TGFBI Transforming growth factor,
beta-induced, 68 kDa

Cell adhesion, migration, cell–matrix
interaction

15, 16

TFPI Tissue factor pathway inhibitor Cell adhesion, migration, and proliferation 17, 18
CDC42BPA CDC42 binding protein

kinase alpha (DMPK-like)
Cell morphogenesis, cell signaling 19, 20

L1CAM L1 cell adhesion molecule Cell morphogenesis, migration, and cell
survival

21, 22

TNC Tenascin C (hexabrachion) Cell adhesion, migration, proliferation,
and angiogenesis

23, 24

SEL-1L Sel-1 suppressor of lin-12-like Negative regulation of colony formation,
growth, and invasion; cell–matrix interaction

25, 26
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Unsupervised IPA network analysis identified a network of
35 genes that included all 6 focus genes and 29 additional
genes (score ¼ 16; Table 2). The interactive relationship
between the genes in the network is shown in Figure 1B.
Importantly, all 6 genes were classified into a single net-
work related to cellular movement, cell morphology, and
cellular development (Table 2). Of the 6 genes, 5 were also
a part of a network involving cell signaling and cell inter-
action (P¼ 7.07E-06 to 3.07E-02) and cell movement (P¼
1.38E-04 to 3.51E-02). The extremely low probability of
obtaining this number of differentially expressed mole-
cules in one network by chance alone is reflected by the
P value for the network (P ¼ 1.0E-16), indicating that this
network is deregulated in a highly significant, nonrandom
manner in pancreatic cancer cells. In addition, WWTR1/
TAZ has also been reported to function in the regulation of
cell migration in breast cancer (13). Therefore, we conclude
that our functional genomic pathway approach has iden-
tified a gene signature related to cell movement, morphol-
ogy, and organization, suggestive that the loss of the 3p12
locus in pancreatic cancer could be related to change in cell
morphology and aberrant migration associated with early
events in malignant transformation of pancreatic ductal
epithelial cells (Table 2).

TNC and TFPI are candidate plasma biomarkers that
distinguish pancreatic cancer from normal screening
controls

Four of the genes of the 7-gene panel (TGFBI, TFPI,
LICAM, and TNC) were also secreted proteins. Sandwich
ELISA assays were then done on 2 of the 4 secreted proteins,
TFPI and TNC, for which commercial ELISAs were available
to determine their ability to function as plasma biomarkers.
The patient population characteristics used in the present
study with respect to age, sex, alcohol intake history, smok-
ing history, diabetic history, site of the disease, staging, and
survival data are presented in Table 3. Results indicated that
individual plasma TNC-L levels, presented in the form of a
scatter plot (Fig. 2A), were significantly different between
pancreatic cancer patients and normal screening controls in
that the median plasma TNC-L levels was 342.6 pg/mL in
patients with pancreatic adenocarcinoma (n ¼ 36) as com-
pared with levels in normal subjects (243.3; n ¼ 19;

Student’s t test, P ¼ 0.0006; Mann–Whitney’s U test, P ¼
0.0004). Figure 2B illustrates the ROC curve for TNC. The
AUC was 0.79, with a specificity of 47% at 90% sensitivity
and sensitivity of 25% at 90% specificity.

We next extended our study to further validate the signi-
ficance of TFPI as a potential plasma biomarker by ELISA.
Figure 2Cdepicts the individual plasmaTFPI levels ofnormal
and pancreatic cancer patients. Plasma TFPI levels of patients
with pancreatic adenocarcinoma were significantly higher
than normal subjects (Student’s t test, P ¼ 0.0004; Mann–
Whitney’s U test, P< 0.0001), with the median plasma TFPI
level of 27.0 ng/mL in pancreatic adeonocarcinoma patients
(n ¼ 36) compared with normal subjects (15.3; n ¼ 19).
Figure 2D illustrates the ROC curve which compares the
ability of plasma TFPI to distinguish between patients with
pancreatic cancer andnormal subjects. The AUC for TFPIwas
0.87, with a specificity of 63% given 90% sensitivity and
a sensitivity of 64% given 90% specificity.

We next tested whether the combination of the 2markers
TNC and TFPI could increase sensitivity and specificity for
discrimination between cancer and normal plasma sam-
ples. The combined AUC for both markers was 0.88
(Fig. 2E). The combination of markers resulted in a speci-
ficity of 63% given 90% sensitivity and a sensitivity of 67%
given 90% specificity. These combined results, then, suggest
that the 2-gene panel identified through our functional
genomic studies has high sensitivity and specificity to dis-
criminate tumor and normal samples in the plasma and
indicate that these genes are candidate blood-based bio-
markers for pancreatic cancer. The diagnostic potential of
candidate biomarkers TNC and TFPI, relative to and in
combination with CA19-9, the standard serum biomarker
for pancreatic cancer, was determined. Results indicated
that individual plasmaCA19-9 levels, presented in the form
of a scatter plot (Fig. 2F), were significantly different
between pancreatic cancer patients and normal screen-
ing controls in that the median plasma CA19-9 levels were
173U/mL in patients with pancreatic adenocarcinoma (n¼
36) as compared with levels in normal subjects (11.9; n ¼
19; Student’s t test, P < 0.00001;Mann–Whitney’sU test, P <
0.00001). Figure 2G illustrates the ROC curve for CA19-9,
and the AUC was 0.93, with a specificity of 94.74% at 90%
sensitivity and sensitivity of 91.67% at 90% specificity.

Table 2. Networks identified from IPA

Network Genes in Ingenuity networka Functions Scoreb

1 ACAN, ALCAM, CAT, CD47, CDC42, CDC42BPA, CDC42BPB,
CHI3L1, CR1, DKK1, FDXR, GCH1, L1CAM, LIMK2, MMP19,
NCAN, NFkB (complex), PRRX1, PTHLH, PTK2, PTPRZ1,
SAA@, SDC4, SEL-1L, SNAP91, SQLE, SYVN1, TFPI, TGFB3,
TGFBI, TNC, TNF, TP53, TPM1, VCAN

Cellular movement,
Cell morphology,
Cellular development

16

aGenes in boldface were identified from our functional genomic pathway approach as differentially expressed across 3 platforms as
focus genes; additional genes listed were identified by IPA.
b A score >3 is considered significant.
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Figure 2H illustrates the ROC curve for CA19-9 and TFPI
combined. The AUC was 0.99, with a specificity of 100% at
90% sensitivity and sensitivity of 97.22%at 90% specificity.
Wenext testedwhether the combination of the 2markers,

TNC and TFPI, with CA19-9 could further increase sensi-

tivity and specificity for discrimination between cancer and
normal plasma samples. The combined AUC for all the
markers was 0.99 (Supplementary Fig. S4). The combina-
tion of markers resulted in a specificity of 100% given 90%
sensitivity and a sensitivity of 97.22% given 90% specificity.

Table 3. Characteristics of samples used in the study

Characteristics Test set (TEXGEN) Validation set (UAB)

No. of patients
(n ¼ 36)

No. of controls
(n ¼ 19)

No. of patients
(n ¼ 37)

No. of controls
(n ¼ 15)

Sex
Male 20 11 22 4
Female 16 8 15 11

Age, y
<50 2 3 2 4
50–60 12 12 6 3
61–70 15 3 12 3
71–80 7 1 13 5
81–90 0 0 4 0

Race
White 36 19 33 13
Black 0 0 4 2

Histology
Adenocarcinoma 36 0 37 0

Alcohol history
Current 10 N/A N/A N/A
Former 14 N/A N/A N/A
Never 12 N/A N/A N/A

Smoking history
Current 10 N/A N/A N/A
Former 13 N/A N/A N/A
Never 13 N/A N/A N/A

Diabetes history
Yes 7 N/A N/A N/A
No 29 N/A N/A N/A

Stage
I 0 – – –

II 6 – 1 –

III 5 – 2 –

IV 8 – 9 –

N/A 17 – 25 –

Site
Body 4 – N/A –

Head 21 – N/A –

Pancreas overlapping lesion 7 – N/A –

Tail 4 – N/A –

Stage
Direct extension 9 – N/A –

Direct extension þ lymph node 3 – N/A –

Distant 17 – N/A –

Localized 2 – N/A –

Regional lymph node involvement 1 – N/A –

N/A 4 – N/A –

Abbreviation: N/A, not available.

Pathways Approach Identifies Pancreatic Cancer Biomarkers

www.aacrjournals.org Cancer Prev Res; 4(1) January 2011 143

Research. 
on January 17, 2022. © 2011 American Association for Cancercancerpreventionresearch.aacrjournals.org Downloaded from 

Published OnlineFirst November 11, 2010; DOI: 10.1158/1940-6207.CAPR-10-0025 

http://cancerpreventionresearch.aacrjournals.org/


To further strengthen our findings and to validate our
results in a different sample set, we tested TFPI levels by
ELISA in plasma samples from normal and pancreatic
adenocarcinoma patients collected at the UAB. A descrip-
tion of the UAB sample set is given in Table 3. Because
the addition of TNC did not add significantly to the
sensitivity and specificity (Supplementary Fig. S4), we
analyzed only TFPI levels in these samples. Figure 3A
depicts the individual plasma TFPI levels of normal and
pancreatic cancer patients. Plasma TFPI levels of patients
with pancreatic adenocarcinoma were significantly
higher than normal subjects (Student’s t test, P ¼
0.000014; Mann–Whitney’s U test, P ¼ 0.0001), with
the median plasma TFPI level of 45.7 ng/mL in pancreatic
adeonocarcinoma patients (n ¼ 37) compared with nor-
mal subjects (25.6; n ¼ 15). Figure 3B illustrates the ROC
curve to compare the ability of plasma TFPI in distin-
guishing between patients with pancreatic cancer and
normal subjects. The AUC for TFPI was 0.87 with a
specificity of 46.67% at 90% sensitivity and 70.27%
sensitivity at 90% specificity.

Next, we analyzed CA19-9 by ELISA in these samples.
Results indicated that individual plasma CA19-9 levels,
presented in the form of a scatter plot (Fig. 3C), were
significantly different between pancreatic cancer patients
and normal screening controls in that the median
plasma CA19-9 levels was 171.2 U/mL in patients with
pancreatic adenocarcinoma (n ¼ 37) as compared with
levels in normal subjects (15.7; n ¼ 15; Student’s t test, P ¼
0.0000000400227; Mann–Whitney’s U test, P ¼ 0.0001).
Figure 3D illustrates the ROC curve for CA19-9, in which
the AUC was 0.84, with a specificity of 13.33% at 90%
sensitivity and 75.68% sensitivity at 90% specificity. The
combined AUC for TFPI and CA19-9 was 0.94 (Fig. 3E).
The combination of markers resulted in a specificity of
86.67% at 90% sensitivity and 83.78% sensitivity at 90%
specificity.

Discussion

Attempts to identify pancreatic cancer biomarkers have
failed to produce a single marker with the sensitivity and

A

E F G H

B C D

Figure 2. Candidate biomarkers from functional genomic approach validated in plasma of pancreatic cancer patients versus controls. A, plasma TNC-L
concentrations of pancreatic carcinoma patients and normal subjects. Line, median plasma TNC level. The difference between normal and pancreatic
adenocarcinoma samples is statistically significant (Mann–Whitney's U test, P ¼ 0.0004). B, ROC curve for differentiating normal and pancreatic
carcinoma patients on the basis of the plasma TNC ELISA assay. The AUC was 0.79. The specificity was 47% given 90% sensitivity and the sensitivity
was 25% given 90% specificity; C, plasma TFPI concentrations in pancreatic carcinoma patients and normal subjects. Line, median plasma TFPI
level. The difference between normal and pancreatic adenocarcinoma samples is statistically significant (Mann–Whitney's U test, P < 0.0001). D, ROC
curve for differentiating normal and pancreatic carcinoma patients on the basis of the plasma TFPI ELISA assay. The AUC was 0.87. The specificity
was 63% given 90% sensitivity and the sensitivity was 64% given 90% specificity; E, ROC curve for differentiating normal and pancreatic
carcinoma patients on the basis of the combinations of 2 markers, plasma TNC and TFPI ELISA. The combined AUC is 0.88. F, plasma CA19-9
concentrations of pancreatic carcinoma patients and normal subjects. Line, median plasma CA19-9 level. The difference between normal and pancreatic
adenocarcinoma samples is statistically significant (Mann–Whitney's U test, P < 0.00001). G, ROC curve for differentiating normal and pancreatic
carcinoma patients on the basis of plasma CA19-9 ELISA assay. The AUC was 0.93, with a specificity of 94.74% at 90% sensitivity and sensitivity
of 91.67% at 90% specificity; H, ROC curve for differentiating normal and pancreatic carcinoma patients on the basis of combinations of 2 markers,
plasma CA19-9 and TFPI ELISA. The combined AUC was 0.99.
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specificity necessary for population screening. We reasoned
that a targeted strategy to identify differentially expressed
genes related to the earliest cytogenetic aberrations might
be more successful in developing such biomarkers because
we would be able to focus on those aberrantly expressed
genes that may be involved in initiating the pathways that
ultimately lead to tumorigenesis, invasion, and metastasis.
Using 3 different expression platforms, we identified a 7-
gene set as being differentially expressed between pancrea-
tic cancer and normal samples and from which we have
validated a subset of markers for differential expression by
ELISA assays. Our results indicate that we have been able to
identify 2 relevant blood-based biomarker candidates for

pancreatic cancer. Several published reports document the
potential of using immunohistochemical staining of TNC,
an extracellular matrix protein, as a potential marker of
early disease as well as a predictor of poor prognosis in
several tumor types, including colon, bladder, and pan-
creas (31–34). TNC has been shown to be overexpressed in
the stroma by IHC in a variety of different cancers, includ-
ing pancreatic cancer (31–33, 35). In addition to stromal
expression, TNC expression increases from low-grade
PanIN-1A and -1B intraductal precursor lesions to high-
grade PanIN-2 and -3 lesions to invasive lesions, suggestive
that TNC could be an early immunohistochemical marker
of disease (31). However, reports of the utility of TNC as a

Figure 3. A, plasma TFPI
concentrations of pancreatic
carcinoma patients and normal
subjects. Line, median plasma
TFPI level. The difference between
normal and pancreatic
adenocarcinoma samples is
statistically significant (Mann–
Whitney's U test, P¼ 0.0001). B,
ROC curve for differentiating
normal and pancreatic carcinoma
patients on the basis of plasma
TFPI ELISA assay. The AUC was
0.87 with a specificity of 46.67%
at 90% sensitivity and 70.27%
sensitivity at 90% specificity. C,
plasma CA19-9 concentrations of
pancreatic carcinoma patients
and normal subjects. Line, median
plasma CA19-9 level. The
difference between normal and
pancreatic adenocarcinoma
samples is statistically significant
(Mann–Whitney's U test, P¼
0.0001). D, ROC curve for
differentiating normal and
pancreatic carcinoma patients on
the basis of plasma CA19-9 ELISA
assay. The AUC was 0.84, with a
specificity of 13.33% at 90%
sensitivity and 75.68% sensitivity
at 90% specificity. E, ROC curve
for differentiating normal and
pancreatic carcinoma patients on
the basis of combinations of 2
markers, plasma CA19-9 and TFPI
ELISA. The combined AUC was
0.94 and resulted in a specificity of
86.67% at 90% sensitivity and
83.78% sensitivity at 90%
specificity.
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blood-based biomarker have been limited to colorectal
cancer (36), in which TNC spliced variant overexpression
in plasma was observed and is considered a potential
biomarker for colorectal cancer. Our data implicate TNC
as a potential plasma marker for pancreatic cancer, which
based on its expression in precursor lesions and upregula-
tion with increasing stage, suggests that it might be a
marker of early disease.

Our results also identify TFPI as a novel pancreatic plasma
biomarker candidate. TFPI is a major inhibitor of the tissue
factor pathway of blood coagulation in vivo. Plasma TFPI
levels havebeen shown to increase significantly at the timeof
diagnosis compared with controls and reach near normal
levels following surgical removal of pancreatic tumor (37).
Plasma TFPI has also been reported to be increased in acute
pancreatitis compared with normal subjects (38). Plasma
levels of total TFPI has been found to be upregulated in a
number of solid tumors involving colon, pancreas, and
stomach (39). Recently, increased TFPI expression levels
have also been reported in colon and breast tumor tissues
(40). Our study suggests that plasma TFPI levels may be a
potential biomarker for pancreatic cancer and can also serve
as a prognostic marker owing to its modulation following
surgery.

Our results indicate that the combined analysis of TFPI
and CA19-9 in plasma can discriminate pancreatic adeno-
carcinoma patients from normal screening controls with
better sensitivity and specificity than CA19-9 alone, at least
in our pilot studies. These results could have significance
for the early screening of pancreatic cancer given that CA19-
9 alone fails to have adequate predictive value. Owing to
CA19-9 being typically a serummarker, these results would
furthermore suggest that future analyses of the value of
CA19-9 screening in plasma as well as its use in combina-
tion with TFPI are warranted to determine whether the
combined panel could result in a viable test for general
population screening.

Furthermore, using a functional genomic approach, we
have identified a cancer-associated network associated with
the differential expression of the chromosome 3p12 locus
implicated in smoking-related malignancies. IPA identified
cell movement/cell morphology/cell differentiation as the
single critical network associated with the 3p12 pathway,
with 7 of 7 genes in the panel functionally implicated
previously in the regulation of cell movement and migra-
tion. Thus, although the importance of migration has been
thoroughly characterized in relationship to metastasis, the
role of cell movement and migration in early stages of
cancer initiation is not well understood. Because the chro-
mosome 3p12 region has been shown to undergo LOH
and homozygous deletion as an early event in smoking-
related cancers, potentially, loss of this region could play a
role in the loss of polarity, cell migration, andmovement in
the earliest stages of malignant transformation and epithe-
lial-mesenchymal transition (EMT) related to invasive dis-
ease. We have earlier characterized one novel gene DEAR1
(annotated as TRIM62) in detail from our SSH library.
Genetic complementation of DEAR1 in a breast cancer cell

line carrying a DEAR1 mutation resulted in restoration of
acinar morphogenesis whereas knockdown resulted in loss
of polarity and tissue architecture in 3-dimensional (3D)
culture (10). Thus, DEAR1 falls within this 3p pathway and
functions in the regulation of cellular morphology and
differentiation, as it relates to changes in 3D acinar mor-
phogenesis. In addition, other members of the 7-gene
panel have also been documented to play a role in cell
migration and early stages of pancreatic cancer, suggestive
that this network may be critically deregulated in early
pancreatic cancer. TNC has been shown to mediate pro-
liferation and migration of astrocytes in a wound assay
(41). Tumor-associated isoforms of TNC has been shown
to promote breast cancer cell invasion and growth (42).
TNC signaling has been reported to play an important role
in mammary tumor growth and metastasis, and knock-
down of TNC exhibited significant impairment in cell
migration and anchorage-dependent cell proliferation in
breast cancer cell line (43). In addition, TNC has also been
shown to stimulate glioma cell migration (44). TFPI has
been shown to control migration of endothelial cells (45).
Extracellular matrix bound TFPI through an interaction
with tissue factor/VIIa complex localized on cancer cells
has also been shown to facilitate cancer cell migration and
adhesion (18).

SEL-1L is the only member of the 7-gene panel shown to
be downregulated in pancreatic tumors versus normal
samples in this study. It is expressed abundantly only in
the normal pancreas and is downregulated in pancreatic
cancers. SEL-1L was first reported as a pancreas-specific
transcript but later found to be highly expressed in normal
pancreas and present at very low levels in several other
adult tissues (25, 46, 47). Its loss of expression has been
observed in 17% of pancreatic adenocarcinomas. Thus,
SEL-1L represents a gene that shows a tissue-restricted
pattern of expression, with the only tissue showing abun-
dant expression being the pancreas. In addition, SEL-1L
maps into a genomic interval for the insulin-dependent
diabetes mellitus locus at chromosome 14q24.3-q31 but
was later excluded as a candidate gene for diabetes (48).
Induced expression of SEL-1L in pancreatic cancer cells has
been shown to decrease the clonogenity and anchorage-
independent growth, and it also delayed tumor growth in
immunodeficient mice (49). In addition, SEL-1L has been
reported to affect pancreatic cancer cell cycle and inva-
siveness by modulating the expression of PTEN and genes
involved in cell–matrix interactions (26). SEL-1L has been
shown to be a negative regulator of Notch signaling. The
Notch pathway has been extensively studied and regulates
cell fate decisions in a large number of adult and embryo-
nic tissues. Components of the Notch signaling pathway
have been shown to be overexpressed in pancreatic
adenocarcinomas (50), with activation of Notch signal-
ing observed in PanIN lesions. Thus, SEL-1L loss of
expression could represent a very early marker of pan-
creatic cancer.

L1CAM has been reported to be overexpressed in a
number of different tumors types including colon, breast,
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and ovarian tumors, melanoma, gliomas, neuroblastomas,
and pancreatic neuroendocrine tumors (21). Immunohis-
tochemical staining of L1CAM was observed in chronic
pancreatitis tissues and was absent in normal pancreatic
tissues (51). Importantly, L1CAM has been shown to play a
role both in migration and in the malignant transforma-
tion of pancreatic adenocarcinoma (51). Importantly,
upregulation of L1CAM expression by IHC has been
observed in later stage, high-grade PanIN lesions as com-
pared with PanIN-1A/1B lesions that are not thought to
have a high risk for progression to pancreatic cancer,
suggestive of the role of L1CAM early in transition to
pancreatic adenocarcinoma (52). Interestingly, WWTR1/
TAZ, a transcription cofactor, was also found to regulate cell
migration and invasion (13, 14). WWTR1 has also been
reported to be amplified in pancreatic cancer cell lines and
in pancreatic cancer (53). It was found to play a role in the
migration, invasion, and tumorigenesis of breast cancer
cells (13). TGFBI has been reported to be overexpressed in
colon and pancreatic cancer (16, 54). TGFBI is an excreted
extracellular matrix protein reported to play a role in cell–
matrix regulation as well as cell migration in bone (55). It
has recently been found as one of a gene panel upregulated
during hematopoietic stem cell lineages as they dif-
ferentiated and became migratory, suggesting a role for
TGFBI in stem cell migration between niches (56).
CDC42BPA, a protein kinase, has also been implicated
in tumor cell invasion (20) and forms a complex with a
leucine-rich adaptor protein, LRAP35a, and MYO18A,
shown to play a crucial role in cell protrusion and migra-
tion (57). Therefore, all 7 genes in our panel have been
closely linked functionally to the control of cell migration
in cancer and potentially in the early stages of pancreatic
tumorigenesis.
In addition, 3 of the 7 genes, L1CAM, TGFBI, and

CDC42BPA, identified as most differentially expressed,
are mutated in the germline in genetic disorders including
CRASH syndrome, Thiel–Behnke corneal dystrophy, and
Crohn’s disease, respectively (58, 59). Given that germline
mutations underlying genetic disorders are very rare, the

finding that our study identified 3 of 7 genes as being
mutated in hereditary diseases indicates the functional
significance of this migration pathway in early develop-
ment, the deregulation of which could be of critical impor-
tance in pancreatic cancer initiation and progression.

In conclusion, we have taken a pathways approach to
biomarker discovery by utilizing 3 different expression-
based platforms to identify chromosome 3p12 pathway
genes differentially expressed between pancreatic tumor/
normal samples, which could serve as candidate biomar-
kers for the early detection of pancreatic cancer. Biomarker
panels described herein will be further validated in larger
case–control studies with the EDRN of the NCI. Additional
candidates from the 7-gene list and associated IPA network
members should also be investigated for their ability to
improve performance of current panels. Future studies are
also warranted to investigate the role of cell polarity and
migration in the initiation of pancreatic cancer and the
potential for biomarker discovery by a targeted pathway
approach.
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