PERSPECTIVES

1719 Long-term Nicotine Replacement Therapy: Cancer Risk in Context
Peter G. Shields
Perspective on Murphy et al., p. 1752, and Maier et al., p. 1743

1724 How Do We Safely Get People to Stop Smoking?
David C.L. Lam and John D. Minna
Perspective on Murphy et al., p. 1752, and Maier et al., p. 1743

MINIREVIEWS

1728 Coxibs and Other Nonsteroidal Anti-Inflammatory Drugs in Animal Models of Cancer Chemoprevention
Susan M. Fischer, Ernest T. Hawk, and Ronald A. Lubet

1736 Weight Cycling and Cancer: Weighing the Evidence of Intermittent Caloric Restriction and Cancer Risk
Henry J. Thompson and Anne McTiernan

RESEARCH ARTICLES

1743 Nicotine Does Not Enhance Tumorigenesis in Mutant K-Ras–Driven Mouse Models of Lung Cancer
Colleen R. Maier, M. Christine Hollander, Ethokia A. Hobbs, Irem Dogan, R. Ilona Linnoila, and Phillip A. Dennis
See Perspective p. 1719 and 1724

1752 Chronic Nicotine Consumption Does Not Influence 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone–Induced Lung Tumorigenesis
Sharon E. Murphy, Linda B. von Weymarn, Melissa M. Schutten, Fekadu Kassie, and Jaime F. Modiano
See Perspective p. 1719 and 1724

Phase III Trial of Selenium to Prevent Prostate Cancer in Men with High-grade Prostatic Intraepithelial Neoplasia: SWOG S9917

Nuclear Morphometry Identifies a Distinct Aggressive Cellular Phenotype in Cutaneous Squamous Cell Carcinoma

Lung Cancer Risk Prediction to Select Smokers for Screening CT—a Model Based on the Italian COSMOS Trial
Patrick Maisonneuve, Vincenzo Bagnardi, Massimo Bellomi, Lorenzo Spaggiari, Giuseppe Pelosi, Cristiano Rampinelli, Raffaella Bertolotti, Nicole Rotmensz, John K. Field, Andrea DeCensi, and Giulia Veronesi

Mammography and Ultrasound Imaging of Preinvasive and Invasive Canine Spontaneous Mammary Cancer and Their Similarities to Human Breast Cancer

Nonsteroidal Anti-inflammatory Drug Use and Risk of Adenomatous and Hyperplastic Polyps
Harvey J. Murff, Martha J. Shrubsole, Zhi Chen, Walter E. Smalley, Heidi Chen, Yu Shyr, Reid M. Ness, and Wei Zheng

Statin Use and Colorectal Cancer Risk According to Molecular Subtypes in Two Large Prospective Cohort Studies
Jung Eun Lee, Yoshifumi Baba, Kimmie Ng, Edward Giovannucci, Charles S. Fuchs, Shuji Ogino, and Andrew T. Chan
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1816</td>
<td>EZH2 Promotes Malignant Phenotypes and Is a Predictor of Oral Cancer Development in Patients with Oral Leukoplakia</td>
<td>Wei Cao, Rania H. Younis, Jiayin, Li, Haiyan Chen, Ronghui Xia, Li Mao, Wantao Chen, and Hening Ren</td>
</tr>
<tr>
<td>1825</td>
<td>Dietary Folate Deficiency Blocks Prostate Cancer Progression in the TRAMP Model</td>
<td>Gaia Bistulfi, Barbara A. Foster, Ellen Karasik, Bryan Gillard, Jeff Miecznikowski, Vineet K. Dhiman, and Dominic J. Smiraglia</td>
</tr>
<tr>
<td>1842</td>
<td>(3-Chloroacetyl)-indole, a Novel Allosteric AKT Inhibitor, Suppresses Colon Cancer Growth In Vitro and In Vivo</td>
<td>Dong Joon Kim, Kamamata Reddy, Myoung Ok Kim, Yan Li, Janos Nadas, Yong-yeon Cho, Jong-Eun Kim, Jung-Hyun Shim, Nui Ry Song, Andria Carper, Ronald L. Lueppt, Ann M. Bode, and Zigan Dong</td>
</tr>
<tr>
<td>1852</td>
<td>Tamoxifen Downregulates Ets Oncogene Family Members ETV4 and ETV5 in Benign Breast Tissue: Implications for Durable Risk Reduction</td>
<td>Melissa A. Crampsie, Nathan Jones, Arunangshu Das, Cesar Aliaga, Dhinman Desai, Philip Lazarus, Shantu Amin, and Arun K. Sharma</td>
</tr>
<tr>
<td>1863</td>
<td>Ethanol Promotes Chemically Induced Oral Cancer in Mice through Activation of the 5-Lipoxygenase Pathway of Arachidonic Acid Metabolism</td>
<td>Yizhu Guo, Xin Wang, Xinian Zhang, Zheng Sun, and Xiaoxin Chen</td>
</tr>
<tr>
<td>1884</td>
<td>Phenylbutyl Isoselenocyanate Modulates Phase I and II Enzymes and Inhibits 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone–Induced DNA Adducts in Mice</td>
<td>Melissa A. Crampsie, Nathan Jones, Arunangshu Das, Cesar Aliaga, Dhinman Desai, Philip Lazarus, Shantu Amin, and Arun K. Sharma</td>
</tr>
<tr>
<td>1895</td>
<td>Combination of Atorvastatin with Sulindac or Naproxen Profoundly Inhibits Colonic Adenocarcinomas by Suppressing the p65/β-Catenin/Cyclin D1 Signaling Pathway in Rats</td>
<td>Melissa A. Crampsie, Nathan Jones, Arunangshu Das, Cesar Aliaga, Dhinman Desai, Philip Lazarus, Shantu Amin, and Arun K. Sharma</td>
</tr>
<tr>
<td>1903</td>
<td>Prospective Investigation of Poultry and Fish Intake in Relation to Cancer Risk</td>
<td>Carrie R. Daniel, Amanda J. Cross, Barry I. Graubard, Albert R. Hollenbeck, Yikung Park, and Rashmi Sinha</td>
</tr>
</tbody>
</table>
1912 Mitochondrial DNA Copy Number and Pancreatic Cancer in the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study
Shannon M. Lynch, Stephanie J. Weinstein, Jarmo Virtamo, Qing Lan, Chin-San Liu, Wen-Ling Cheng, Nathaniel Rothman, Demetrios Albanes, and Rachael Z. Stolzenberg-Solomon

1920 Inhibition by Resistant Starch of Red Meat–Induced Promutagenic Adducts in Mouse Colon
Jean Winter, Laura Nyskohus, Graeme P. Young, Ying Hu, Michael A. Conlon, Anthony R. Bird, David L. Topping, and Richard K. Le Leu

RETRACTION

1929 Phase II Study of the Effects of Ginger Root Extract on Eicosanoids in Colon Mucosa in People at Normal Risk for Colorectal Cancer
Suzanna M. Zick, D. Kim Turgeon, Shaiju K. Vareed, Mack T. Ruffin, Amie J. Litzinger, Benjamin D. Wright, Sara Alrawi, Daniel P. Normolle, Zora Djuric, and Dean E. Brenner

1938 Methyl Selenocysteine: Single-Dose Pharmacokinetics in Men

1945 Retraction: Psoralidin, an Herbal Molecule, Inhibits Phosphatidylinositol 3-Kinase–Mediated Akt Signaling in Androgen-Independent Prostate Cancer Cells

ABOUT THE COVER

The cover image is a photomicrograph of an A/J mouse's lung section stained with hematoxylin and eosin (courtesy of M. Christine Hollander and Phillip A. Dennis). The mouse was treated with intraperitoneal injections of the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butane (NNK; 3 weekly doses of 100 mg/kg starting at 6 weeks of age), and lungs were harvested 16 weeks after treatment started. Histologically normal alveoli (honeycomb-like structures) are present throughout the section, and the large, empty spaces bordered by purple-stained bronchial epithelium are normal bronchioles. A lung tumor (purple mass) is evident at the lower right. In vitro studies have suggested that nicotine (whose chemical structure is superimposed on the lung section) enhances cancer cell growth, but mouse-model studies suggest otherwise, as reported in this issue of the journal. This issue is of critical importance as the FDA considers approval of long-term nicotine replacement therapy for smoking cessation. See articles by Maier et al. (beginning on page 1743), Murphy et al. (beginning on page 1752), Lam and Minna (beginning on page 1724), and Shields (beginning on page 1719) for more information.
Cancer Prevention Research

4 (11)

Updated version Access the most recent version of this article at: http://cancerpreventionresearch.aacrjournals.org/content/4/11

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerpreventionresearch.aacrjournals.org/content/4/11. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.