






appearance, characteristic of normal oralmucosa. The high-
resolution image obtained with the probe placed at this site
is shown in Fig. 1C. The field-of-view is a 720-mm wide
en face view, corresponding to the diameter of the fiber optic
probe seen in Fig. 1A. Cell nuclei appear as discrete dots,
sparsely and evenly distributed throughout the field-of-
view, characteristic of normal epithelium and consistent
with the histologic diagnosis of "normal" (Fig. 1D). Figure
1E toH presents the leftmidtongue of the same patient. The
specific measurement site (indicated in Fig. 1E by the fiber
optic probe) was considered "abnormal, high risk" by
clinical impression. Under AFI, the measurement site
(arrow in Fig. 1F) and surrounding tissue exhibited low
autofluorescence intensity. With the HRME probe placed at
themeasurement site (Fig. 1G), nuclei appeared significant-
ly more crowded and less uniformly spaced than at the
"normal" site, consistent with the histologic diagnosis of
"severe dysplasia" at this site (Fig. 1H).

The 2 sites presented in Fig. 1 were instances in which
clinical impression, wide-field AFI, high-resolution imag-
ing, and pathology diagnosis were all in agreement. In
contrast, Fig. 2 presents a case involving the floor-of-mouth
in a 43-year-old male which appeared normal on clinical
examination under white light (Fig. 2A); however, AFI
indicated a dark region with distinct loss of intensity,
approximately 1 cm in diameter extending to the right of
the frenulum (Fig. 2B).High-resolution imagingwithin this
region revealed local variations in subcellular morphology,
ranging from discrete well-spaced nuclei at the anterior
aspect (Fig. 2C, site "1") to an irregular, crowded appear-
ance of nuclei at the base of the frenulum (Fig. 2D, site "2").
Histopathology sections from these 2 sites indicated normal
mucosa at site "1" (Fig. 2E) and moderate dysplasia at site
"2" (Fig. 2F), consistent with the nuclear morphology
observed in the HRME images. An additional case illustrat-
ing a false positive finding by clinical examination and
AFI which appeared normal by HRME and pathology is
presented in Supplementary Fig. S2.

For each of the 100 measured sites, loss of autofluores-
cence in AFI was quantified by the normalized red-to-green

intensity ratio; nuclear size and crowdingwere quantified in
HRME images by theN/C ratio, as described in theMethods
section. Figure 3 shows values for all 100measurement sites,
grouped into 3 pathology categories; open circles indicate a
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Figure 1. Multimodal optical
imaging in the oral cavity. A–D, a
normal site on the anterior tongue.
E–H, a site diagnosed with severe
dysplasia on the left mid tongue in
the same patient. A and E, WLE;
B and F, AFI; C and G, high-
resolution microendoscopy; and D
and H, histopathology sections. In
(E), scar tissue is apparent, with the
smaller lesion alongside. In (B) and
(F), arrows indicate the location of
the microendoscope probe, as
seen in (A) and (E). Scale bars
represent 100 mm.
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Figure 2. Multimodal optical imaging at the floor-of-mouth. A, the entire
area appeared normal on clinical examination. B, AFI revealed a region
with distinct lossof fluorescence intensity at thepatient's right side.Cand
D, HRME images with the probe placed at sites "1" and "2" in panel (B),
respectively. E and F, histopathology sections from sites "1" and "2"
respectively in panel (B). Scale bars represent 100 mm.
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diagnosis of normal/benign, gray triangles indicate mild
dysplasia, and closed circles represent diagnoses of moder-
ate dysplasia, severe dysplasia, or cancer. Figure 3A shows
the normalized red-to-green autofluorescence intensity
ratio at each site; areas with loss of blue-green fluorescence
correspond to higher ratio values. A threshold value of 1.38
correctly classified normal sites versus mild/moderate/
severe dysplasia or cancer with 87% sensitivity and 76%
specificity. Although 97% of sites with a diagnosis of mod-
erate dysplasia, severe dysplasia, or cancer were correctly
classified using this threshold, only 76%of normal sites and
65% of sites with mild dysplasia were correctly classified
(Table 1). Figure 3B shows theN/C ratio,measuredwith the
HRME at the same sites as Fig. 3A. Higher N/C ratios result
from enlarged or crowded nuclei; a threshold value of 0.142
correctly classified these measurement sites with 84% sen-
sitivity and 71% specificity. Using this threshold, 92% of
sites with a diagnosis of moderate dysplasia, severe dyspla-
sia, or cancer were correctly classified using this threshold,
but only 71% of normal sites and 65% of sites with mild
dysplasia were correctly classified. As shown in Fig. 3C,
when these AFI and HRME parameters are used together, a
single linear threshold correctly classified 98% of normal
sites and 95% of sites with moderate/severe dysplasia, or
cancer (Table 1). However, Fig. 3 also illustrates that sites

with a pathology diagnosis of mild dysplasia (gray trian-
gles) are the most difficult to classify correctly; using mul-
timodal imaging, only 35%of siteswithmilddysplasiawere
correctly classified as abnormal (Table 1). In Fig. 3C, only 2
of 9 mild dysplasia sites in patients with a cancerous lesion
elsewhere in the oral cavity were classified as abnormal by
optical imaging. This suggested thatwhena lesionwithmild
dysplasia is classified as abnormal by optical imaging, it is
an indication of the biology of that specific site, and not a
generalized property of patients with oral cancer.

Recent data suggested that in addition to the dysplastic
changes apparent in H&E sections under light microscopy,
molecular abnormalities may also indicate early precancer-
ous changes in oral lesions (8, 10). We hypothesized that
theremay be a correlation between parametersmeasured by
optical imaging and candidate biomarker expression levels.
Biopsy specimens from all sites with a pathology grade of
normal (n¼45) or dysplasia (mild,moderate, or severe;n¼
37) were stained for Ki-67, p63, and PHH3 markers by
IHC. Figure 4 shows representative histopathology sections
stained for Ki-67, p63, and PHH3 from 2 different mea-
surement sites, both of which were graded asmild dysplasia
by H&E (Fig. 4A and E). Images in the top row (Fig. 4A–D)
were from a site classified by optical measurements as
normal, whereas the bottom row (Fig. 4E–H) were from

Figure 3. Quantification of AFI and HRME images. Symbols represent the diagnosis for each site according to pathology. A, normalized ratio of red-to-green
autofluorescence intensity at each of the 100 sites measured in the study. B, N/C area ratio for the same 100 sites shown in (A). C, classification of
measurement sites using both wide-field autofluorescence and high-resolution morphology. Dashed lines represent linear threshold values to discriminate
between normal sites, and those with mild/moderate/severe dysplasia or cancer.

Table 1. Percentage of sites accurately classified by optical imaging for each pathologic grade

Pathology grade

Mild dysplasia

Normal (%) Histopathology (%) IHC stratified (%) Mod. Dysplasia–Cancer (%)

AFI alone 76 65 67 97
HRME alone 71 65 73 92
AFI þ HRME (MMIS) 98 35 87 95

NOTE: Data are presented for sites with mild dysplasia by standard histopathology considered "abnormal," and also following
stratification of those mild dysplasia sites by biomarker status (p63� considered "normal," p63þ considered abnormal).
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a site classified as abnormal. In the site classified as normal
by optical measurement, Ki-67 and p63 expression was
confined to the lower portion of the epithelium (Fig. 4B
and C), whereas these markers extend to the upper portion
of the epithelium for the site classifiedoptically as abnormal
(Fig. 4F andG). PHH3 staining highlightsmitotically divid-
ing cells at the basal layer in Fig. 4D,which is consistentwith
normal tissue. PHH3-positive cells extending above the
basal layer are apparent in Fig. 4H, which is an abnormal
finding associated with dysplasia.

Tissue sections were evaluated according to the objective
criteria described in Supplementary Table S2,with themean
IHC scores for each pathology grade and each biomarker
shown in Fig. 5A. The expression level of each biomarker
(reflected in themean IHC score) exhibited an increase with
increasing grade of dysplasia. When the expression of p63
alone is compared with dysplasia grade by H&E, we found
that more than 75% of sites graded as moderate or severe
dysplasia exhibited high p63 expression (Fig. 5B, left
group). Interestingly, more than 80% of those sites graded

as mild dysplasia and classified as "abnormal" by optical
measurement also showed high p63 expression, whereas
only 10% of the mild dysplasia sites classified as "normal"
by optical measurement exhibited high p63. When the
fraction of sites with positive IHC for the complete panel
of Ki-67, p63, and PHH3 biomarkers was calculated, we
again noted that most sites with high-grade dysplasia and
mild dysplasia with abnormal classification by optics were
also IHC positive (Fig. 5B, right group).

Optical measurement values for the sites with mild dys-
plasia are shown in Fig. 5C, stratified by p63 expression
level. Five of 6 sites with high p63 expression were classified
as neoplastic based on the optical image parameters. Sim-
ilarly, 8 of 9 sites with low p63 expression had optical
measurements which grouped them with sites considered
normal by H&E. After stratifying the 15 sites diagnosed as
mild dysplasia by pathology according to p63 status (with
low p63 expression considered normal and high p63 con-
sidered abnormal along with moderate dysplasia, severe
dysplasia, and cancer), we determined the accuracy of
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Figure 4. Histopathology sections
of tissue from 2 sites with a
diagnosis of mild dysplasia. A–D,
sections from a site which was
classified as "normal" by optical
measurement. E–H, sections from
a site classified as "abnormal" by
optical measurement. A and E,
H&E-stained sections used by the
study pathologist to classify each
site as mild dysplasia.
Immunostained sections from the
same sites with (B) Ki-67, graded
low, (C) p63, low (D) PHH3, low, (F)
Ki-67, moderate, (G) p63, high, (H)
PHH3, high. Scale bars represent
100 mm.

Figure 5. Analysis of immunohistochemical staining of sections from tissue sites with a pathology diagnosis of normal or dysplasia. A, mean IHC score (see
main text for details) versus pathology grade established by H&E staining, for each of the markers Ki-67, PHH3, and p63. Error bars represent SEs. B, the
fraction of tissue sites with a positive IHC score for either p63 alone, or for the complete panel of markers tested (see text for definition). Data are shown
separated by the pathology grade established by H&E staining. C, plot of wide-field autofluorescence and high-resolution N/C ratio values for sites with a
pathology diagnosis of mild dysplasia, stratified by p63 status. Note that only 15 of the original 17 measurement sites are displayed because of
immunohistochemical processing artifacts in 2 cases. The dashed line represents the linear threshold shown in Fig. 3C to discriminate between normal
sites, and those with mild/moderate/severe dysplasia or cancer.
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classification by each optical imaging system alone and in
combination (Table 1). When stratified by p63 status, the
combination of autofluorescence and high-resolution
imaging correctly classified 87% of sites with a histologic
diagnosis of mild dysplasia. When used alone, the multi-
modal imaging system (MMIS) classified all sites with 76%
sensitivity and 98% specificity. Following stratification of
mild dysplasia sites by biomarker status, MMIS classified
all 100 measured sites with 93% sensitivity and 96%
specificity.

Discussion
Oral cancer presents several unmet clinical challenges

which are also common to other organ sites. Better tools are
needed to improve screening for early-stage disease, to
establish clear surgical margins in patients undergoing
treatment, and to monitor high-risk and postsurgery
patients for development or recurrence of malignant
tumors. Macroscopic AFI with laboratory prototypes and
commercial devices has been evaluated in multiple studies
with varying patient populations (6, 7, 9) and has shown
excellent sensitivity for identifying abnormal tissue through
loss of observed autofluorescence intensity. However, there
is concern that the technique has poor specificity because of
confounding benign conditions, including inflammation
(14, 34). The consequences of poor diagnostic specificity in
a screening tool are serious, including subjecting many
patients to unnecessary procedures, which has the added
effect of creating alarm among patients and increasing
medical costs. Poor specificity in the surgical setting will
result in excessive removal of normal tissue beyond the
tumor margins, resulting in compromised functional and
cosmetic outcomes. The ideal tissue visualization system
will improve both sensitivity and specificity for identifica-
tion of precancerous lesions and cancer, above that which is
currently achieved byWLE. In addition, improvedmethods
are required to evaluate early-stage lesions, particularly
those with mild dysplasia; histopathology is currently a
poor predictor of risk for progression of these lesions to
higher grade disease (35). Therefore, the ability to nonin-
vasively distinguish low-grade sites with a high probability
of malignant transformation from those which will natu-
rally regress would truly represent a paradigm shift in
clinical cancer care (8).
In the study reported here, quantitative multimodal

optical imaging correctly classified 98% of pathologically
confirmed normal tissue sites and 95% of sites graded as
moderate dysplasia, severe dysplasia, or cancer. However,
only 6 of 17 (35%) sites with a pathology grade of mild
dysplasia were correctly classified by optical imaging. We
evaluated all 37 sites with a pathology diagnosis of
dysplasia, for biomarkers whose expression is likely to
be modulated during the development of oral neoplasia
(27–34). Consistent with these earlier studies, expression
levels of Ki-67, PHH3, and p63 were all found to increase
with pathologic grade of dysplasia. When the 17 sites with
a pathology grade of mild dysplasia were stratified by p63

expression into the pathology "normal" or "abnormal"
groups, we found that optical imaging correctly classified
the 100 measured sites with 93% sensitivity and 96%
specificity. Although these findings are encouraging, we
acknowledge that the candidate biomarkers used here are
not yet established prognostic indicators; long-term fol-
low-up of a large, independent cohort of patients is the
most rigorous way to establish the accuracy of these, or
any other molecular marker(s), in predicting the risk of
progression. However, other studies have also suggested
that the probability of neoplastic progression may be
measured by noninvasive optical imaging methods. Guil-
laud and colleagues showed that samples with an elevated
nuclear phenotypic score (NPS) were more than 10 times
more likely to progress than those without (36). This NPS
incorporated the maximum nuclear radius, a parameter
which is related to the N/C ratio used here. Poh and
colleagues found high-risk LOH profiles in 63% of sites
exhibiting loss of autofluorescence at resected tumor
margins (9). These observations collectively raise the
possibility that multimodal imaging may facilitate in vivo
detection of molecularly abnormal yet clinically normal
tissue, an exciting prospect for advancing translation of
molecular tumor classification tests from the laboratory
into actual clinical care.

This study has several important clinical implications.
First, the ability to improve detection of oral premalignant
lesions would have tremendous impact in the screening
setting, by identifying lesions at a stage in which less
morbid, less expensive, and completely curative treatment
can be administered. The ability to objectively discriminate
between abnormalities with different biomarker profiles
would further impact clinical decision making. Mild dys-
plasia is particularly challenging for clinicians because it can
appear transiently in reaction to inflammation, trauma, or
contact allergy, or it can represent the initial stage in the
transitionofnormalmucosa towardhigh-gradedysplasia or
cancer (37). For those tissue sites that remain under suspi-
cion and require a biopsy for definitive diagnosis or molec-
ular analysis, optical imaging methods can assist the phy-
sician in selecting the most relevant site from which to
obtain the tissue specimen. In the surgical setting, delinea-
tion of the dysplastic or neoplastic margins is of the utmost
importance, given our current understanding of field can-
cerization and the high rates of recurrence among head and
neck cancer patients. Multimodal optical imaging could be
used to provide real-time guidance on resection margins,
alone or in combination with frozen section pathology.

This study has several strengths, including the use of
independent biopsies with blinded pathology review to
provide the gold standard diagnosis at each site measured.
The investigation was carried out with a unique cohort of
patients with high probability of dysplasia or cancer, lead-
ing to a distribution of pathology diagnosis across the
spectrum from normal, through increasing grades of dys-
plasia, to cancer.

The ultimate objective for diagnostic adjuvants is to be
able to predict which patients with potentially malignant
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disorders are at high riskof progression and to identify those
with low risk who will not require aggressive surveillance.
Noninvasive multimodal optical imaging classified tissue
sites into normal and neoplastic categories with higher
sensitivity and specificity than expert clinical impression.
Whereas sites with mild dysplasia proved the most difficult
to classify by any method, stratification with the candidate
biomarker p63 increased the classification accuracy of
MMIS at these sites. Althoughmolecular abnormalities have
traditionally only been identified in resected tissue, the
prospect of using optical imaging for real-time, in vivo
delineation of molecularly damaged mucosa is particularly
exciting and warrants further study. This includes establish-
ing a consensus on the appropriate biomarker (or markers)
which reliably indicatemalignant potential and then testing
optical imaging measurements against these markers in
longitudinal studies. Significantly, these principles have
potential to be extended to the screening, diagnosis, and
treatment of dysplasia and neoplasia in other organs
beyond the oral cavity.
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