REVIEWS
887 Key Principles and Clinical Applications of “Next-Generation” DNA Sequencing
Jason M. Rizzo and Michael J. Buck

901 Obesity and Ovarian Cancer Survival: A Systematic Review and Meta-analysis
Melinda M. Protani, Christina M. Nagle, and Penelope M. Webb

RESEARCH ARTICLES
911 Dietary Methyl Donor Depletion Protects Against Intestinal Tumorigenesis in ApcMin/+ Mice
Krishna Kadaveru, Petr Protiva, Emily J. Greenspan, Young-In Kim, and Daniel W. Rosenberg

921 Relative Distribution of Folate Species Is Associated with Global DNA Methylation in Human Colorectal Mucosa
Jia Liu, Luke B. Hesson, Alan P. Meagher, Michael J. Bourke, Keith N. Rand, Peter L. Molloy, John E. Fimanda, and Robyn L. Ward

930 Dietary Energy Balance Modulates Epithelial-to-Mesenchymal Transition and Tumor Progression in Murine Claudin-Low and Basal-like Mammary Tumor Models

943 Assessing Individual Breast Cancer Risk within the U.K. National Health Service Breast Screening Program: A New Paradigm for Cancer Prevention

LETTERS TO THE EDITOR
962 Resveratrol Helps Recovery from Fatty Liver and Protects against Hepatocellular Carcinoma Induced by Hepatitis B Virus X Protein in a Mouse Model
Hsiu-Ching Lin, Yi-Fan Chen, Wen-Hsin Hsu, Chi-Wen Yang, Cheng-Heng Kao, and Ting-Fen Tsai

963 Dietary Carcinogen 2-Amino-1-Methyl-6-Phenylimidazo-[4,5-b] Pyridine–Induced Prostate Carcinogenesis in CYP1A-Humanized Mice
Guangxun Li, Hong Wang, Anna B. Liu, Connie Cheung, Kenneth R. Reuhl, Maarten C. Bosland, and Chung S. Yang

972 Highly Potent Activation of Nrf2 by Topical Tricyclic Bis(Cyano Enone): Implications for Protection against UV Radiation during Thiopurine Therapy
Sukirti Kalra, Elena V. Knatko, Ying Zhang, Tadashi Honda, Masayuki Yamamoto, and Albena T. Dinkova-Kostova

982 Hexane Fraction of American Ginseng Suppresses Colitis and Colon Cancer—Letter
Po C. Chan and James Huff

983 Hexane Fraction of American Ginseng Suppresses Colitis and Colon Cancer—Response
Deepak Poudyal, Phuong Mai Le, Tia Davis, Anne B. Hofseth, Alena Chumanevich, Alexander A. Chumanevich, Michael J. Wargovich, Mitzi Nagarkatti, Prakash S. Nagarkatti, Anthony Windust, and Lorne J. Hofseth

984 Soy Isoflavones for Breast Cancer Risk Reduction—Letter
Anna H. Wu, Darcy V. Spicer, and Malcolm C. Pike

986 Soy Isoflavones for Breast Cancer Risk Reduction—Response
Seema A. Khan, Robert T. Chatterton, and Raymond Bergan
ABOUT THE COVER

The links between obesity (highly prevalent in many parts of the world) and claudin-low or basal-like breast cancers are unclear. Given the poor prognosis of these intrinsic breast cancer subtypes, the identification of mechanistic targets and strategies to prevent or control them is critical. The cover features an immunofluorescence photomicrograph (X60 magnification) of E-Wnt basal-like mammary tumors derived from MMTV-Wnt-1 transgenic mice. The epithelial morphology of these tumors is reflected by high expression of the common epithelial marker E-cadherin (green; nuclei are blue). E-cadherin expression is lost in M-Wnt claudin-low mammary tumors, which have a mesenchymal morphology and very poor prognosis. Diet-induced obesity significantly decreased E-cadherin expression and increased mesenchymal marker expression in E-Wnt cells, whereas calorie restriction increased E-cadherin expression and suppressed growth in both E-Wnt and M-Wnt tumors. Therefore, components of the epithelial-to-mesenchymal transition pathway represent possible targets for breaking the obesity-breast cancer link, particularly for the poor prognosis, often therapy-resistant subtypes basal-like and claudin-low breast cancers. See article by Dunlap et al. (beginning on page 930) for more information.