Lipid Metabolism Genes in Contralateral Unaffected Breast and Estrogen Receptor Status of Breast Cancer

Jun Wang1, Denise Scholtens2,3, Michelle Holko2, David Ivancic1, Oukseub Lee1, Hong Hu1, Robert T. Chatterton, Jr.1,3, Megan E. Sullivan4, Nora Hansen1, Kevin Bethke1, Carola M. Zalles6, and Seema A. Khan1,5

Abstract
Risk biomarkers that are specific to estrogen receptor (ER) subtypes of breast cancer would aid the development and implementation of distinct prevention strategies. The contralateral unaffected breast of women with unilateral breast cancer (cases) is a good model for defining subtype-specific risk because women with ER-negative (ER−) index primaries are at high risk for subsequent ER-negative primary cancers. We conducted random fine needle aspiration of the unaffected breasts of cases. Samples from 30 subjects (15 ER-positive (ER+) and 15 ER− cases matched for age, race and menopausal status) were used for Illumina expression array analysis. Findings were confirmed using quantitative real-time PCR (qRT-PCR) in the same samples. A validation set consisting of 36 subjects (12 ER+, 12 ER− and 12 standard-risk healthy controls) was used to compare gene expression across groups. ER− case samples displayed significantly higher expression of 18 genes/transcripts, 8 of which were associated with lipid metabolism on gene ontology analysis (GO: 0006629). This pattern was confirmed by qRT-PCR in the same samples, and in the 24 cases of the validation set. When compared to the healthy controls in the validation set, significant overexpression of 4 genes (DHRS5, HMGC852, HPGD and ACSL3) was observed in ER− cases, with significantly lower expression of UGT2B11 and APOD in ER+ cases, and decreased expression of UGT2B7 in both subtypes. These data suggest that differential expression of lipid metabolism genes may be involved in the risk for subtypes of breast cancer, and are potential biomarkers of ER-specific breast cancer risk. Cancer Prev Res 6(4): 321–30. ©2013 AACR.

Introduction
Breast cancer prevention requires accurate identification of high-risk women, not only those who are at risk of developing breast cancer, but also by risk for estrogen-receptor (ER) subtype, because effective pharmacologic prevention agents are currently only effective against ER positive (ER+) breast cancer. A wide array of established risk factors for breast cancer relates to endogenous life-time estrogen exposure (1–4), but the relative risk (RR) estimates for each of these factors are modest (1.5–2.0), and associations with the receptor subtype of breast cancer (5) are not strong enough to guide clinical decision making. Statistical models in clinical use have only modest discriminatory ability on hormone receptor subtype (6, 7). Currently, the only validated breast-based biomarkers of sporadic breast cancer risk consist of epithelial atypia (8, 9) and mammographic density (10, 11), with RR estimation of 4 or greater, but again without specificity for ER subtypes of subsequent cancer (12). Molecular changes in benign breast lesions have potential value for the improved identification of high-risk women (13–15), but so far no hormone receptor (HR) subtype specificity has been shown.

Endocrine interventions that prevent ER+ breast cancer (16–18) have adverse effects that have prevented wide adoption by high-risk women (19). Identification of women at risk specifically for ER− breast cancer, therefore likely to benefit from endocrine prevention, may improve acceptance of these drugs. Similarly, the identification of women at risk for ER-negative (ER−) breast cancer would spare women the toxicity of endocrine agents from which they would not benefit, and allow their recruitment to studies of new interventions with potential efficacy against ER− disease.

The contralateral unaffected breast of women undergoing surgical therapy for newly diagnosed unilateral breast cancer is an efficient model for discovery of subtype-specific risk markers, because studies of metachronous contralateral breast cancer show that second primary tumors in the contralateral breast resemble the ER status of the index primary. In a pooled analysis of NSABP studies, the OR for the association between ER status of the index primary and metachronous contralateral cancer was 14.8 [95% confidence interval (CI), 3.8–74.3%; P < 0.001; ref. 20]. In
recent analyses of SEER data and the Geneva tumor registry, women whose first breast tumors were ER—were much more likely to develop an ER—second tumor. Women with HR-negative first tumors have nearly a 10-fold elevated risk (standardized incidence ratio = 9.81; 95% CI, 9.0–10.7%) of developing HR-negative second tumors (21, 22). The mechanism for HR status similarity of bilateral tumors is not clear, besides an association with younger age onset and possible hereditary mutations in BRCA1, BRCA2 and TP53 (21). Although the results of these studies need to be considered in the context of their methodological limitations (some studies lack detailed treatment or recurrence data, and are subject to a survival bias), the unaffected contralateral breast provides a window of opportunity for investigation of the molecular environment before the development of a second tumor. On the one hand, the contralateral breast may display a local physiological environment for specific subtype tumorigenesis, similar to the affected breast before the first tumor occurs. On the other hand, the contralateral breast may be affected by the first tumor through systemic factors (such as growth factors and paracrine factors) or affected by treatment for the first tumor, and modulated to a microenvironment favorable to similar subtype tumorigenesis. In either situation, studies on gene expression profiles in contralateral breast would provide us clues on tumor subtype preference and potential ER-specific biomarkers.

In this study, we have examined gene expression profiles in random fine needle aspirate (rFNA) samples from the contralateral breasts of women with new unilateral breast cancer (cases) to seek candidate panels of ER-specific risk biomarkers. On a discovery set of 30 women, we have identified gene expression differences in the contralateral breast that associate with ER+ or ER—index primary tumors. These findings were confirmed using qRT-PCR, validated in an independent set of 24 case samples, and compared to rFNA samples from 12 healthy controls. This report on a total of 66 women is larger than other studies of molecular features of normal breast epithelium, where total sample size has generally been under 50 women (23). Thus, our present findings based on 54 cases and 12 healthy controls constitute one of the largest of these challenging studies.

Materials and Methods

Study population

Cases diagnosed with unilateral breast cancer proceeding to primary surgical therapy were recruited under an Institutional Review Board (IRB) approved protocol (NU-835-040), with exclusions for neoadjuvant treatment, prior endocrine therapy, or pregnancy/lactation during the prior 2 years. rFNA was conducted in the operating room, on the contralateral unaffected breast of 85 women using the method of Fabian and colleagues (24). Samples were collected in a PBS-heparin solution and were kept on ice until processing. Samples from 54 subjects yielded sufficient high-quality RNA and could be matched by age, race and menopausal status. Of these, 30 subjects were included in the test set for microarray analysis and 24 were used in the validation set. Twelve healthy control subjects were recruited to a different protocol where rFNA of both breasts was conducted for development of breast cancer risk biomarkers.

In the test set for microarray analysis and 24 were used in the validation set (Fig. 1). In addition, a standard risk control group consisted of 12 healthy women recruited to another IRB approved protocol (NU08BZ), with rFNA being conducted in the clinic. Thus, the total number of women included in the study (test, validation, control) was 66. By design, age, menopausal status and race were balanced between ER+ and ER—groups, and between controls and cases. The menopausal status was determined using last menstrual period date and hormonal criteria with true postmenopausal status classification were serum estradiol <30 pg/mL and follicle-stimulating hormone >30 IU/L. Cytological evaluation was done on one tenth of the sample; liquid-based cytological processing (Cytyc Corporation) was used to prepare a Papanicolaou-stained slide. Cytomorphology was assessed (by CZ) and classified by Masood semiquantitative index (25), and National Institute Consensus Panel Criteria (26). The projected probability of developing cancer at 5 years was calculated for each subject according to the Gail model (7) at the time of aspiration (for cases the calculation was meant only as a summary description of breast cancer risk factors, for comparison purposes).

Total RNA extraction and gene expression profiling

Total RNA was extracted from rFNA samples using Trizol reagent (Invitrogen) and purified using RNeasy Plus Micro Kit (Qiagen). RNA was then treated with DNase and checked for integrity using Agilent 2100 Bioanalyzer. Samples with adequate RNA quality (RNA integrity number >8) were selected from 30 patients (15 with ER+ and 15 with ER—contralateral primaries) for Illumina array hybridization. Patients in the 2 groups were matched by age, race,
menopause status, and menstrual phase from premenopausal women as far as possible. Total RNA sample reverse transcription, labeling, and hybridization were conducted by Northwestern University Genomics Core Facility using Illumina Human WG6 BeadArray which contains 48,804 50-mers probes to detect >25,400 unique curated genes. The microarray data were deposited on Gene Expression Omnibus (GEO) with accession number GSE41400.

Quantitative RT-PCR

Total RNA (10 ng) was reverse-transcribed using high-capacity RNA-to-cDNA Master Mix (Applied Biosystems) for qRT-PCR in 9 ER+/ER− pairs of test set, additional 12 ER+/ER− pairs in an independent validation set, with 12 rFNA samples from healthy individuals at standard cancer risk as controls. Eight selected genes and 2 housekeeping genes (GAPDH and HPRT1) for normalization were pre-loaded in 384 well microfluidic cards (each gene in triplicate) for Taqman low-density gene expression assays from Applied Biosystems. Assays were designed with small amplicons (<100 bp) to enhance detection sensitivity. RT-PCR reactions were then carried out in an Applied Biosystems 7900HT machine. Both test and validation set samples were tested in triplicate for all 8 target genes and 2 housekeeping genes. For each sample, the average of Ct values of each gene was calculated and used for data analysis. For each target gene, expression level was normalized against the average expression of 2 housekeeping genes.

Statistical analysis

The raw data were normalized using the robust spline (RSN) algorithm available in the lumi Bioconductor package for R statistical software. Nonspecific filtering was done by limiting analyses only to those with interquartile range above the median. Gene expression levels were compared between ER+ and ER− groups using paired t tests. Acknowledging the potential for false discovery, but aiming toward an encompassing list of candidates, genes with a nominal P-value less than 0.05 and at least 2-fold difference between two groups were considered differentially expressed seed candidate genes. The differentially expressed genes were analyzed for gene function annotation enrichment and gene ontology terms using DAVID (http://david.abcc.ncifcrf.gov/home.jsp). The annotation categories with at least 3 involved genes and a modified Fisher exact P-value less than 0.05 were considered strongly enriched in the gene function. Average linkage hierarchical clustering analysis was done using Cimminer from NCI Genomics and Bioinformatics Group (http://discover.nci.nih.gov/) to generate color-coded Clustered Image Maps (CIMs). All P-values are 2-tailed.

Results

All results presented pertain to the contralateral unaffected breasts of breast cancer cases, which are referred to as ER+ or ER− depending on the ER status of the index lesion.

Study subjects and rFNA cytology assessment

By design, age, menopausal status, and race were balanced between ER+ and ER− groups as well as across test and validation sets. The detailed patient clinical information and index tumor features are listed in Supplementary Tables S1 (test set) and S2 (validation set). There is no significant difference in Her2 status between ER+ and ER− groups in either the test or the validation sets (P = 0.328 and 0.871, respectively using x2 test). Tumor grade in the ER− group was significantly higher than in ER+ group in test set (P = 0.0028) and in validation set (P = 0.043) using x2 test. As summarized in Table 1, there were also no significant

| Table 1. Summary of clinical information of patients for rFNA samples studies |
|---------------------------------|-----------------|-----------------|-----------------|------------|
| | Healthy controls | Patients with ER+ cancer | Patients with ER− cancer | P-value |
| Test set in microarray | | | | |
| N | 15 | 15 | | |
| Age | 50.3 ± 8.2 | 51.5 ± 9.3 | | |
| Premenopausal vs. postmenopausal | 5/10 | 7/8 | | |
| European vs. other race | 10/5 | 10/5 | | |
| BMI | 27.5 ± 6.8 | 27.0 ± 4.0 | 0.98 | |
| Gail 5-year risk | 1.1 ± 0.7 | 1.6 ± 1.2 | 0.64 | |
| Independent validation set in qRT-PCR | | | | |
| N | 12 | 12 | 12 | |
| Age | 53.1 ± 6.2 | 52.5 ± 8.6 | 54.4 ± 8.9 | |
| Premenopausal vs. postmenopausal | 4/8 | 4/8 | 4/8 | |
| European vs. other race | 10/2 | 10/2 | 10/2 | |
| BMI | 29.6 ± 9.3 | 27.0 ± 8.0 | 28.3 ± 6.3 | 0.74 |
| Gail 5-year risk | 1.2 ± 0.3 | 1.6 ± 1.2 | 1.6 ± 0.9 | 0.45 |

The data is mean and SD. Wilcoxon rank-sum test was used to compare the difference on age, BMI, and Gail 5-year risk between ER+ and ER− groups within testing set. One-way ANOVA test was used to compare the difference on age, BMI, and Gail 5-year risk among healthy control group, ER+ group and ER− group within validation set.
differences between ER+ and ER− groups with regard to BMI and 5-year Gail risk. For the validation set, there were no significant differences in these parameters between healthy controls and breast cancer cases. All cases have been followed for a minimum of 3 years, and one contralateral cancer has emerged, at an interval of 2 years.

In the test set there was no significant difference between ER+ and ER− groups in cytological category ($P = 0.72$) and Masood score ($P = 0.14$) of rFNA samples (Fig. 2). In the validation set, Masood score was similar between healthy controls and breast cancer cases ($P = 0.19$). However, the cytological category differed, with the ER− cases showing a significantly higher frequency of contralateral breast atypia (9/15) than the healthy controls ($P = 0.015$) and ER+ cases ($P = 0.026$). There was no difference between healthy controls and ER+ cases ($P = 0.75$). The median fraction of atypical cells in the atypical samples was 5%.

Identification of differentially expressed genes

From 35,964 genes and 12,838 undesignated transcripts, 18 transcripts (with 5 duplicated genes) were found to be differentially expressed between ER+ and ER− groups by using 2-tailed paired t test (difference > 2-fold, P-value < 0.05). The expression of these genes was higher in the ER− group (Supplementary Table S3). As the P-values were not adjusted for multiple testing, we considered these to be most likely differentially expressed genes, compared to other genes that did not meet these criteria. After eliminating 5 duplicated genes, gene set enrichment analysis was done on 13 unique genes (Supplementary Table S4) using DAVID. Among the annotation categories that contained at least 3 target genes, the lipid metabolic process (GO:0006629) showed the most significant gene enrichment ($P = 1.56 \times 10^{-8}$), which indicated that 8 genes from the gene set were involved in lipid metabolism and enriched in other

Figure 2. rFNA cytomorphology assessment using (A) cytology consensus panel criteria and (B) Masood index score. χ^2 test was used to compare difference on cytology category within test and validation sets. Wilcoxon rank-sum test was used to compare difference on Masood index score between ER+ and ER− groups within test sets. One-way ANOVA test was used to compare the difference on Masood index score among healthy control group, ER+ group and ER− group within validation set.
metabolic processes, such as fatty acid metabolism, steroid metabolism, and lipid biosynthesis (Supplementary Table S5). These were DHR52, HMGCS2, HPGD, ACSL3, UGT2B7, UGT2B11, APOD, and ALOX15B.

There were 9 pairs of rFNA samples out of 15 pairs of the test set with sufficient residual RNA to conduct confirmatory qRT-PCR assay of these 8 genes. Paired t-tests showed that the expression of 7 genes were significantly higher in samples from ER− cases than those from ER+ cases (Supplementary Fig. S1), confirming the microarray results. The expression of UGT2B7 was also consistent with microarray results (higher in samples from ER− cases than in ER+ cases), but was not statistically significant.

Hierarchical clustering analysis on 30 rFNA samples using 8 lipid metabolism genes (normalized to the median abundance of each gene) discriminated the samples into 3 major groups on the heatmap (Fig. 3). In group A, 10 of 13 samples (77%) from ER− cases were associated with ER− cases compared to controls. The expression of DHRS2 (6.3-fold, \(P = 0.009\)), HMGCS2 (4.4-fold, \(P = 0.029\)), HPGD (4.3-fold, \(P = 0.002\)), and ACSL3 (2.2-fold, \(P = 0.031\)), whereas there was no significant difference in expression of these 4 genes between ER+ cases and the control group. In contrast, expression of UGT2B11 (−5.6-fold, \(P = 0.0005\)) and APOD (−3.0-fold, \(P = 0.0004\)) was significantly lower in the ER+ cases compared to controls. The expression of UGT2B7 was significantly decreased in both ER+ cases (−15.5, \(P = 0.0005\)) and ER− cases (−11.5, \(P = 0.0005\)) compared to controls, and was also different between ER− and ER+ groups (3.9, \(P = 0.020\)). Overall, among the 8 genes that were tested in the validation set, expression of 4 genes (DHRS2, HMGCS2, HPGD, ACSL3) was increased in ER− cases, expression of 2 genes (UGT2B11 and APOD) was decreased in ER+ cases, and expression of 1 gene (UGT2B7) was decreased in both subtypes. ALOX15B was not associated with either subtype.

Expression of 8 lipid metabolism-related genes in an independent validation set

To further validate the expression pattern of this 8 gene-set and to examine whether these genes were differentially expressed between high- and standard-risk breasts, we tested their expression in an independent validation set of rFNA samples from 12 healthy controls and 24 cases (12 ER+ and 12 ER−), matched for age, race and menopausal status (Table 1). The expression of 8 genes in samples from ER− cases was significantly higher than in ER+ cases (UGT2B11 being the only gene with a marginal significance), thus confirming the microarray and qRT-PCR results from the test set. Figure 4 shows one-way ANOVA results for the 8 genes, expression of which is significantly different among the 3 groups of subjects as reflected by the Bonferroni-adjusted \(P\) values. In addition, when comparing gene expression in the ER− cases to the control group, 4 genes were expressed at significantly higher levels: DHRS2 (6.3-fold, \(P = 0.009\)), HMGCS2 (4.4-fold, \(P = 0.029\)), HPGD (4.3-fold, \(P = 0.002\)), and ACSL3 (2.2-fold, \(P = 0.031\)), whereas there was no significant difference in expression of these 4 genes between ER+ cases and the control group. In contrast, expression of UGT2B11 (−5.6-fold, \(P = 0.0005\)) and APOD (−3.0-fold, \(P = 0.0004\)) was significantly lower in the ER+ cases compared to controls. The expression of UGT2B7 was significantly decreased in both ER+ cases (−15.5, \(P = 0.0005\)) and ER− cases (−11.5, \(P = 0.0005\)) compared to controls, and was also different between ER− and ER+ groups (3.9, \(P = 0.020\)). Overall, among the 8 genes that were tested in the validation set, expression of 4 genes (DHRS2, HMGCS2, HPGD, ACSL3) was increased in ER− cases, expression of 2 genes (UGT2B11 and APOD) was decreased in ER+ cases, and expression of 1 gene (UGT2B7) was decreased in both subtypes. ALOX15B was not associated with either subtype.
Hierarchical clustering analysis on 36 rFNA samples using 8 lipid metabolism genes (normalized to the median abundance of each gene) not only discriminated 24 case samples into 3 major groups, but also dissected 12 control samples from 24 case samples (Fig. 5). Similar to the test set, 7 of 10 samples (70%) in group A with lower expression...
levels were ER+ cases; 4 of 6 (67%) samples in group B with gene expression in the middle range came from ER+ cases. In group C with highest expression level, 7 of 8 samples (88%) were associated with ER− cases. The association between the 3 main clusters and the ER status of the cases was significant (Fisher exact $P = 0.034$). There was no clear dissection on the cytology categories on 24 cases. The control samples in group D were dissected into 2 clusters. The 4 samples in the first cluster (D-a) showed high gene expression levels, similar to group C samples (mainly ER− cases). Their cytology assessment was 2 atypia, 1 borderline, and 1 benign. In contrast, the 8 samples in the second cluster (D-b) had lower expression levels (except UGT2B7), similar to group A samples (mainly ER+ cases). All the cytology assessments of the 8 samples were benign.

Discussion

Using the clinically normal contralateral breasts of breast cancer cases, we have shown that analysis of gene expression is feasible in rFNA samples, generating the first report of extensive gene expression analysis with such samples. Until now rFNA samples have been used for immunohistochemistry (27, 28) and DNA-based analyses (29–34), although feasibility of gene expression measurement has been explored (35). Considering the topographic heterogeneity in the breast, rFNA sampling is a useful tool for the discovery of breast cancer risk biomarkers; it provides a predominant-ly epithelial sample from a large area of the breast and allows the evaluation of women with clinically normal breasts, therefore greatly expanding the population for study, and eventual application of results. Finally, the use of the contralateral unaffected breast as a discovery platform allows the avoidance of the potentially initiated field around the tumor, which has been the subject of previous studies (36–39).

We have identified a candidate group of genes that are differentially expressed in the unaffected breasts of ER+ and ER− breast cancer cases. The risk of ER− metachronous second primaries is increased up to 22-fold in women with an index ER− primary (21). The presence of distinct gene expression patterns in the contralateral breast suggests that distinct gene expression patterns precede the development of different tumor subtypes. To our knowledge, this is the first report of a gene signature defined in the unaffected breasts of women with new unilateral ER+/ER− breast cancer, matched for age, race, and menopausal status.

The candidate genes were identified by comparison of gene array results between 2 high-risk groups; we selected 8 lipid metabolism–related genes from a total of 18 genes on the basis of gene ontology analysis. The differential expression of these genes was confirmed by qRT-PCR in the test set and verified in the validation set. Upon comparison with healthy control samples in the validation set, we observed that although the ER+/ER− differences were preserved, there were ER-specific differences in expression relative to healthy controls. The expression of 4 genes (DHRS2, HMGCS2, HPGD, and ACSL3) was significantly higher only in ER− cases (compared to ER+ cases and to healthy controls), suggesting a specific association of high expression of these 4 genes with risk for ER− breast cancer. In contrast, expression of 2 genes (UGT2B11 and APOD) was significantly decreased in ER+ cases compared with either control or ER− groups, indicating a possible protective association with ER+ cancer. UGT2B7 on the other hand, showed significant decrease in both ER+ group and ER− group compared with controls, suggesting a protective function of UGT2B7 against both subtypes of breast cancer.

The potential involvement of lipid metabolism–related genes to ER− breast cancer is unexpected, though evidence pointing to a link of lipid/steroid metabolism with ER− breast cancer risk and outcomes exists. ER−/PR− tumors are more common in obese premenopausal women (5), and large hip circumference has a particularly strong association with premenopausal ER−/PR− breast cancer (40). Specific estradiol metabolites may affect risk of ER− breast cancer (41), and studies of low-fat dietary interventions suggest a bigger impact on the outcome of ER− than ER+ tumors (42). Our novel findings that lipid metabolism–related genes are expressed at higher levels in the contralateral breasts of ER− cases point to potential interactions of the lipid metabolism–sex steroid axis and the metabolic environment of high-risk breasts.

The functions of these genes in relation to lipid modification and elimination, and to transportation and detoxification of distinct lipid compounds, suggest that their expression results in a specific microenvironment of steroid hormone metabolites, which may determine whether initiated cells progress to ER+ or ER− tumors. For example, UDP-glucuronosyl-transferase (UGT) 2B subfamily enzymes (UGT2B7, UGT2B11, UGT2B28) catalyzes conjugation glucuronic acid and facilitate elimination of potentially toxic compounds, particularly steroids, from target cells. UGT2B7 has unique specificity for 3,4-catechol estrogens and estriol, and may protect breast tissues from carcinogenic estrogen metabolites locally (43, 44). Expression of UGT2B7 and 2B11 genes was found to be decreased in breast cancer and in benign biopsies from healthy women with high mammographic density, a strong breast cancer risk factor (45). DHRS2 (Hep27), a member of short-chain alcohol dehydrogenase/reductase (SDR) family of enzymes, has roles in ER+ breast cancer and is more frequently expressed in ER+ tumors (46). Its presence at higher levels in ER− cases suggests other roles in normal breast tissue. The HPGD gene encoding an alcohol dehydrogenase regulated by progesterone is a poor prognostic marker in breast cancer (47), and is overexpressed in ER− cell lines and ER− tumors (48). The specific roles and interaction of these genes in the genesis of ER− tumors clearly needs further work, but just as clearly, point to a heretofore unsuspected role of lipid metabolism abnormalities in the genesis of ER− breast cancer.

Weaknesses of our study include the fact that P-values for the initial selection of genes were not adjusted for multiple comparisons because of small sample size. There is possibility that the differences in the test set are chance
observations. Although the possibility of false discovery is mitigated by the verification of higher expression using qRT-PCR in the same samples, and in an independent validation set of similar samples with striking and distinct differences between ER− and ER+ case samples and healthy controls, further confirmation in a large sample set is needed.

The subjects in this study did not undergo neoadjuvant treatment, prior endocrine therapy, or pregnancy/lactation during the prior 2 years. Thus, we have minimized the potential effects on these factors on our study results. Although premenopausal samples were not matched for menstrual phase, we find in a parallel study that the expression of these genes is unrelated to serum estradiol and progesterone, and does not fluctuate during the menstrual cycle (manuscript in preparation). Another major exposure of interest that may modulate these genes, in our opinion, is obesity. Even though we did not find correlations between BMI and the 8 lipid metabolism gene set, we do not have the power to fully assess the impact of BMI because of the small sample size in this study. In addition, as we do not have detailed data on diet, physical activity variables, and other systemic lipid markers other than BMI, we cannot explore those relationships. We plan to include exploration of association with body mass index and other systemic lipid markers in future studies.

An additional question relates to the "normality" of the case samples. The cyt morphology of rFNA samples was similar in the case groups of the test set. In the validation set, the more quantitative Masood scores were not significantly different, but the categorical assessment of cyt morphology showed significantly more atypia in the ER− cases. However, atypical cells comprised a median of 5% of the epithelial sample, and are therefore unlikely to be driving the observed gene expression patterns. We will pursue this in future studies, because a relationship of lipid metabolism–related genes with cytological atypia, if it exists, would be of significant interest. Finally, with more than 3 years minimum follow-up on these subjects, only 1 of 54 cases developed contralateral breast cancer, providing some confidence that our samples came from truly unaffected high-risk breasts.

Prior examinations of molecular signatures of morphologically benign epithelial samples adjacent to breast tumors (36, 37, 39) have shown marked similarities to the molecular features of the adjacent cancer and is useful in defining the molecular “field” around the tumor (49), which may include paracrine effects of tumor cells on adjacent tissue. The use of the contralateral breast avoids these potential problems, and retains the advantage of analyzing tissue where the ER status of future cancers is likely to be similar to the index lesion (21, 22).

In this study, we observed the association between differential expression of lipid metabolism genes in the unaffected contralateral breast and tumor ER status. As the rFNA samples from contralateral breast were taken at the same time of tumor removal, the differential gene expression in contralateral breast could reflect a systemic alteration induced by tumor itself; if so, it seems that systemic changes differ between women with ER− and ER+ breast cancer. Future studies of tissue acquired before tumor development would clarify the question. However, comparing our results with previous study by Graham and colleagues (38) on gene expression in tumor-adjacent epithelium point to the possibility of important differences in the tumor-adjacent epithelium and the contralateral high-risk tissue. The recent study of nonproliferative tumor-adjacent epithelium described a 198-gene signature differentiating the field surrounding 15 ER+ tumors from that surrounding 15 ER− tumors (38). Although 5 of our 13 lipid metabolism genes (Supplementary Table S3) were on that list (UGT2B28, HPGD, SERHL, HMGCS2, and ALOX15B), the difference was in the opposite direction (higher expression in samples adjacent to ER+ tumors), and concordant with expression patterns in the tumors themselves. Thus, differentially expressed genes in the surrounding field may not parallel those in the contralateral breast. With a similar sample size and high-quality RNA, although a different array platform, we found a much smaller number of differentially expressed genes in ER− and ER+ cases, implying that gene expression in the contralateral breasts of ER+ and ER− cases displays much smaller differences. Thus, continued investigations of unaffected breast tissue from the breast cancer population are vital; molecular changes that support the initial development of cancer may not be detectable in tumors and their surrounding tissue because they are swamped by the abundance of changes present in fully developed tumors. In contrast, the molecular features of unaffected high-risk tissue may reflect predisposing physiological conditions in the breast microenvironment, such as inflammatory states, oxidative stress, and deranged metabolism that promote tumor formation, which are no longer detectable in fully developed tumors, but are targets for preventive intervention.

In future studies, we will compare the profiles of lipid metabolism genes in normal epithelial cells adjacent to the tumor with those located in different quadrants and contralateral breasts. However, the eventual clinical utility of a validated signature may well be in rFNA samples, to offer risk stratification to women with clinically normal breasts.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: M.I. Holko, H. Hu, R.T. Chatterton, S.A. Khan
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M.I. Holko, D. Ivancic, O. Lee, H. Hu, R.T. Chatterton, M.E. Sullivan, K. Bethke, C.M. Zalles, S.A. Khan
Writing, review, and/or revision of the manuscript: J. Wang, O. Lee, H. Hu, R.T. Chatterton, M.E. Sullivan, N. Hansen, K. Bethke, C.M. Zalles, S.A. Khan
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): H. Hu, S.A. Khan
Study supervision: S.A. Khan
Grant Support
This work was supported by the Lynn Sage Cancer Research Foundation, Avon Foundation, and a generous donation from Ms. Dariel Eklund.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked

References

www.aacrjournals.org Cancer Prev Res; 6(4) April 2013

329

