Indeterminate Pulmonary Nodules: Risk for Having or for Developing Lung Cancer?
Pierre P. Massion and Ronald C. Walker
See related article, p. 1179

Short- and Long-term Lung Cancer Risk Associated with Noncalcified Nodules Observed on Low-Dose CT
Paul F. Pinsky, P. Hrudaya Nath, David S. Gierada, Sushil Sonavane, and Eva Szabo
See related article, p. 1173

Epigenetic DNA Methylation of Antioxidative Stress Regulator NRF2 in Human Prostate Cancer
Tin Oo Khor, Francisco Fuentes, Limin Shu, Ximena Paredes-Gonzalez, Anne Yuqing Yang, Yue Liu, Dominic J. Smiraglia, Srinivasan Yegnasubramanian, William G. Nelson, and Ah-Ng Tony Kong

Eflornithine (DFMO) Prevents Progression of Pancreatic Cancer by Modulating Ornithine Decarboxylase Signaling

A DRD1 Polymorphism Predisposes to Lung Cancer among Those Exposed to Secondhand Smoke during Childhood
Ana I. Robles, Ping Yang, Jin Jen, Andrew C. McClary, Kara Calhoun, Elise D. Bowman, Kirsi Vahakangas, K. Leigh Greethouse, Yi Wang, Susan Olivo-Marston, Angela S. Wenzlaff, Bo Deng, Ann G. Schwartz, and Brad M. Ryan

Lycopene Attenuated Hepatic Tumorigenesis via Differential Mechanisms Depending on Carotenoid Cleavage Enzyme in Mice
Blanche C. Ip, Chun Liu, Lynne M. Ausman, Johannes von Lithig, and Xiang-Dong Wang

Dietary Tomato and Lycopene Impact Androgen Signaling- and Carcinogenesis-Related Gene Expression during Early TRAMP Prostate Carcinogenesis
Lei Wan, Hsueh-Li Tan, Jennifer M. Thomas-Ahner, Dennis K. Pearl, John W. Erdman Jr, Nancy E. Moran, and Steven K. Clinton

Multitarget Effects of Quercetin in Leukemia
Victor Maso, Andranika Karla Calgarotto, Gilberto Carlos Franchi Jr, Alexandre Eduardo Nowill, Paulo Latuf Filho, José Vassallo, and Sara Teresinha Olalla Saad

Methylation Analysis of the FAM19A4 Gene in Cervical Scrapes Is Highly Efficient in Detecting Cervical Carcinomas and Advanced CIN2/3 Lesions
Lise M.A. De Strooper, Chris J.L.M. Meijer, Johannes Berkhof, Albertus T. Hesselink, Peter J.F. Snijders, Renske D.M. Steenbergen, and Danielle A.M. Heideman

Proton Pump Inhibitors and Histamine 2 Blockers Are Associated with Improved Overall Survival in Patients with Head and Neck Squamous Carcinoma
Silvana Papagerakis, Emily Bellile, Lisa A. Peterson, Maria Pliakas, Katherine Balaskas, Sara Selman, David Hanauer, Jeremy M.G. Taylor, Sonia Duffy, and Gregory Wolf

Crucial Role of c-Jun Phosphorylation at Ser63/73 Mediated by PHLPP Protein Degradation in the Cheilensisin A Inhibition of Cell Transformation
Junlan Zhu, Jingjie Zhang, Haishan Huang, Jingxia Li, Yonghui Yu, Honglei Jin, Yang Li, Xu Deng, Jinmin Cao, Qinshi Zhao, and Chuanshu Huang

DNA Methylation Levels at Chromosome 8q24 in Peripheral Blood Are Associated with 8q24 Cancer Susceptibility Loci
Kathryn Hughes Barry, Lee E. Moore, Joshua Sampson, Lijing Yan, Ann Meyer, Andrew J. Oler, Charles C. Chung, Zhaoming Wang, Meredith Yeager, Laufey Amundadottir, and Sonja I. Berndt

Acknowledgment to Reviewers
ABOUT THE COVER

Ornithine decarboxylase (ODC) is the key rate-limiting enzyme in the synthesis of polyamines, and it is overexpressed in a variety of cancers, including pancreatic cancer. Activation of ODC signaling occurs at early stages of pancreatic precursor lesions and increases as the tumor progresses. Longitudinal profiling of tumor progression revealed that ODC and polyamine synthesis levels were increased in KrasG12D-activated genetically engineered mice and correlated with aggressiveness of tumor growth. The ODC inhibitor, eflornithine (DFMO), caused modulation of ODC pathway signaling with significant inhibition of pancreatic ductal adenocarcinoma (PDAC) incidence, tumor cell proliferation, and increased expression of p21/p27 in KrasG12D mice. These preclinical data indicate that DFMO applied at clinically relevant dose levels has potential for chemoprevention of pancreatic cancer. The figure depicts immunofluorescence staining of pancreatic intraepithelial neoplasia (PanIN) lesions and PDAC showing membranous and cytoplasmic localization of ODC (green). Counter nuclei staining was performed with DAPI (blue). See the article by Mohammed and colleagues (beginning on page 1198) for more information.