REVIEWS

557 Aspirin and Other NSAIDs as Chemoprevention Agents in Melanoma
James R. Goodman and Douglas Grossman

565 Development of an Active Site Peptide Analog of α-Fetoprotein That Prevents Breast Cancer
Herbert I. Jacobson, Thomas T. Andersen, and James A. Bennett

RESEARCH ARTICLES

574 Chemoprevention of Esophageal Cancer with Black Raspberries, Their Component Anthocyanins, and a Major Anthocyanin Metabolite, Protocatechuic Acid
Daniel S. Peiffer, Noah P. Zimmerman, Li-Shu Wang, Benjamin W.S. Ransom, Steven G. Carmella, Chieh-Ti Kuo, Jibran Siddiqui, Jo-Hsin Chen, Kiyoko Oshima, Yi-Wen Huang, Stephen S. Hecht, and Gary D. Stoner

585 Slow Overmethylation of Housekeeping Genes in the Body Mucosa Is Associated with the Risk for Gastric Cancer
Jung-Hwan Oh, Mun-Gan Rhyu, Sung-Hoon Jung, Sang-Wook Choi, Suk-Ill Kim, and Seung-Jin Hong

596 p53 Modulates Hsp90 ATPase Activity and Regulates Aryl Hydrocarbon Receptor Signaling
Amit Kochhar, Levy Kopelovich, Erika Sue, Joseph B. Guttenplan, Brittny-Shea Herbert, Andrew J. Dannenberg, and Kotha Subbaramaiah

607 miR-194 as a Predictor for Adenoma Recurrence in Patients with Advanced Colorectal Adenoma after Polypectomy
Zhen-Hua Wang, Lin-Lin Ren, Ping Zheng, Hai-Ming Zheng, Ya-Nan Yu, Ji-Lin Wang, Yan-Wei Lin, Ying-Xuan Chen, Zhi-Zheng Ge, Xiao-Yu Chen, Jie Hong, and Jing-Yuan Fang

617 Inhibition of the Transition of Ductal Carcinoma In Situ to Invasive Ductal Carcinoma by a Gemini Vitamin D Analog
Joseph Wahler, Jae Young So, Yeoun Chan Kim, Fang Liu, Hubert Maehr, Milan Uskokovic, and Nanjoo Suh

627 6-Shogaol from Dried Ginger Inhibits Growth of Prostate Cancer Cells Both In Vitro and In Vivo through Inhibition of STAT3 and NF-κB Signaling
Achinto Saha, Jorge Blando, Eric Silver, Linda Beltran, Jonathan Sessler, and John DiGiovanni

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
Ductal carcinoma in situ (DCIS) is a nonmalignant lesion of the breast with the potential to progress to invasive ductal carcinoma (IDC). The disappearance and breakdown of the myoepithelial cell layer and basement membrane in DCIS have been identified as major events in the development of breast cancer. The inhibitory effects of the Gemini vitamin D analog BXL0124 on the transition from DCIS to IDC were investigated using the MCF10DCIS.com xenograft model in mice. To assess the effects of BXL0124 on the maintenance of myoepithelial cell layer and basement membrane in DCIS, co-immunofluorescence staining was carried out with a basement membrane marker, laminin 5, and a myoepithelial cell marker, smooth muscle actin (SMA), in DCIS tumors. The cover micrograph depicts the merged images of laminin 5 (shown in green), SMA (shown in red), or nuclei (blue). The present study demonstrates BXL0124 as a potential agent to inhibit the transition of DCIS to IDC by maintaining the integrity of the myoepithelial cell layer and the basement membrane. See the article by Wahler et al. (beginning on page 617) for more information.
Cancer Prevention Research

7 (6)

Updated version
Access the most recent version of this article at:
http://cancerpreventionresearch.aacrjournals.org/content/7/6

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerpreventionresearch.aacrjournals.org/content/7/6.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.