COMMENTARY

339 The Fallopian Tube: From Back Stage to Center Stage
Mark H. Greene and Phuong L. Mai
See related article, p. 342

REVIEW

342 Salpingectomy as a Means to Reduce Ovarian Cancer Risk
Mary B. Daly, Charles W. Dresher, Melinda S. Yates, Joanne M. Jeter, Beth Y. Karlan, David S. Alberts, and Karen H. Lu
See related article, p. 339

RESEARCH ARTICLES

349 Menopause Is a Determinant of Breast Adipose Inflammation
Neil M. Iyengar, Patrick G. Morris, Xi Kathy Zhou, Ayca Gucalp, Dilip Giri, Michael D. Harbus, Domenick J. Falcone, Margaret D. Krasne, Linda T. Yahdat, Kotha Subbaramaiah, Monica Morrow, Clifford A. Hudis, and Andrew J. Dannenberg

359 Omega-3 and Omega-6 Fatty Acids in Blood and Breast Tissue of High-Risk Women and Association with Atypical Cytomorphology
Brandon H. Hidaka, Roti Subbaramaiah, Monica Morrow, Clifford A. Hudis, and Andrew J. Dannenberg

365 CXCR4 Is a Novel Target of Cancer Chemopreventative Isothiocyanates in Prostate Cancer Cells
Kozue Sakao, Avani R. Vyas, Sreenivasa R. Chinni, Ali I. Amjad, Rahul Parikh, and Shivendra V. Singh

375 Plumbagin Inhibits Prostate Carcinogenesis in Intact and Castrated PTEN Knockout Mice via Targeting PKCe, Stat3, and Epithelial-to-Mesenchymal Transition Markers
Bilal Bin Hafeez, Joseph W. Fischer, Ashok Singh, Weixiong Zhong, Ala Mustafa, Louise Meske, Mohammad Ozair Sheikhani, and Ajit Kumar Verma

387 Regulation of VDR Expression in Apc-Mutant Mice, Human Colon Cancers and Adenomas
Charles Giardina, Masako Nakanishi, Awaad Khan, Anton Kuratnik, Wanli Xu, Bruce Brenner, and Daniel W. Rosenberg

400 Prevention of Carcinogen and Inflammation-Induced Dermal Cancer by Oral Rapamycin Includes Reducing Genetic Damage
Vinh Dao, Sri Lakshmi Pandeswara, Yang Liu, Vincenti Hurez, Sherry Dodds, Danielle Callaway, Aujie Liu, Paul Haas, Zelton D. Sharp, and Tyler J. Curiel

410 Metabolomic Markers of Altered Nucleotide Metabolism in Early Stage Adenocarcinoma
William R. Wikoff, Dmitry Gropov, Johannes F. Fahrmann, Brian DeFelice, William N. Rom, Harvey I. Pass, Kyounghni Kim, UyenThao Nguyen, Sandra L. Taylor, David R. Gandara, Karen Kelly, Oliver Fiehn, and Suzanne Miyamoto

419 Fenretinide Perturbs Focal Adhesion Kinase in Premalignant and Malignant Human Oral Keratinocytes. Fenretinide’s Chemopreventive Mechanisms Include ECM Interactions
Byungdo B. Han, Suyang Li, Meng Tong, Andrew S. Holpuch, Richard Spinney, Daren Wang, Michael B. Border, Zhongfa Li, Sachin Sarode, Ping Pei, Steven P. Schwendeman, and Susan R. Mallery

431 Novel Evidence for Curcumin and Boswellic Acid–Induced Chemoprevention through Regulation of miR-34a and miR-27a in Colorectal Cancer
Shusuke Toden, Yoshinaga Okugawa, Constanze Buhrmann, Durgha Nattamai, Esperanza Anguiano, Nicole Baldwin, Mehdi Shaki, C. Richard Boland, and Ajay Goel

444 Nrf2-Dependent Suppression of Azoxymethane/Dextran Sulfate Sodium-Induced Colon Carcinogenesis by the Cinnamon-Derived Dietary Factor Cinnamaldehyde
Min Long, Shasha Tao, Montserrat Rojo de la Vega, Tao Jiang, Qing Wen, Sophia L. Park, Donna D. Zhang, and Georg T. Wondrak
ABOUT THE COVER

Colorectal cancer is the third most common form of cancer in the United States and accounts for approximately 50,000 deaths annually. Although colonoscopic screening programs have significantly reduced cancer rates, colorectal cancer continues to inflict a significant health burden on the population. Identifying dietary agents and supplements that reduce the risk of colorectal cancer development could offer a powerful accompaniment to present screening efforts. It is, however, important to understand the context and limitations with which specific cancer prevention agents function in order to apply them effectively to responsive patient populations. Vitamin D has been implicated in colon cancer prevention, but its activity has proven difficult to establish in human intervention trials. Evidence has been obtained that colonic lesions may lose their responsiveness to vitamin D at early stages of development. The cover illustration depicts a colon tumor formed in the Apc<sup>D^{14/+/} mouse analyzed for expression of the high affinity vitamin D receptor, VDR. VDR expression is lost in tumors formed in this pre-clinical model, which makes them less responsive to the gene regulatory actions of vitamin D. For more information on the potential mechanisms underlying VDR suppression, see the article by Giardina et al. (beginning on page 387).