When "Effective" Prevention Agents Fail to Elicit Anticipated Effects: Challenges in Trial Design

Kenneth Y. Tsai1 and Ernest T. Hawk2

See related article by Jeter et al., p. 128

Introduction

In this issue of Cancer Prevention Research, Jeter and colleagues report a randomized phase IIB study comparing a combination of topical diclofenac and difluoromethylornithine (DFMO) to each single agent administered to sun-damaged skin in 136 patients who completed the study over three months (1). The goal was to test whether this combination was superior to either agent alone in reversing karyometric average nuclear abnormality (ANA), a novel set of quantitative measurements of nuclear morphology, which has been shown to predict the clinical aggressiveness of cutaneous squamous cell carcinoma (2). Contrary to expectations, the ANA increased in all three groups raising potentially important questions about the inherent efficacy of these agents, the status of neoplastic risk in the study cohort, the validity of ANA as an intermediate efficacy marker, and/or the impact of combinations of these variables on the ability of the study to answer its foundational question regarding the short-term efficacy of the combination relative to each agent alone. Although the results were interpreted as null, they could also be considered as an insufficient test of efficacy; in any case, they are certainly also informative regarding the many challenges of clinical chemoprevention trials. Here, we summarize some of these points to highlight the challenges and better inform future clinical research projects and designs.

Rationale

With the possible exception of NSAIDs, few compounds have elicited as much interest as DFMO in chemoprevention. As an irreversible inhibitor of ornithine decarboxylase, DFMO suppresses a critical target of multiple oncogenes as well as the rate-limiting step of polyamine synthesis (3). DFMO has elicited a significant amount of interest in colon cancer chemoprevention primarily because of a major trial showing a greater than 60% reduction in adenoma recurrence over 3 years and 92% reduction in the number of patients with advanced adenomas (3). In chemoprevention of skin cancer, systemic DFMO has shown an effect (though not statistically significant) in suppressing new basal cell carcinoma formation over 4 to 5 years (4). Upon follow-up, statistically insignificant effects of suppressing nonmelanoma skin cancers persisted without toxicity (5).

Topical DFMO reduced the emergence of new actinic keratosis by 23.5% when used over a period of 6 months and, importantly, was accompanied by a reduction in spermidine concentrations in the skin, although not in two other polyamines (6), as well as reductions in numbers of cells with aberrant p53 expression (7). Importantly, ANA karyometry has been used to measure effects of topical DFMO on moderately sun-damaged skin in combination with triamcinolone over 6 months, resulting in a significant reduction of karyometric abnormalities in all active (but not placebo) treatment groups (8).

Diclofenac is a pan-COX inhibitor that is FDA-approved for the treatment of actinic keratosis. Several randomized placebo-controlled clinical trials have demonstrated efficacy of the topical diclofenac formulation for this indication. However, comparing diclofenac with other agents such as 5-fluorouracil or imiquimod across their independent efficacy trials, it is likely that it is not as effective overall as other agents, although no direct, randomized comparison trials have been performed (9).

Biochemical and Surrogate Endpoints

Jeter and colleagues used an endpoint of quantitative nuclear karyometry to evaluate sun-damaged skin in this trial and the response to the interventions. This technology quantitatively evaluates nuclear morphology using 93 characteristics of nuclear chromatin patterns, including the ANA. Inflammation is a potential confounder of some of these measures; therefore, the authors focused on total optical density, relative nuclear area, and the number of densely stained pixels, which are presumed to be unaffected by inflammation. Even so, no significant differences between the arms were noted, which was certainly not anticipated. Given the fact that ANA has been established as an intermediate efficacy marker earlier with DFMO and other agents, what explains this finding? Importantly, the baseline ANA was quite low across the entire cohort in this study, suggesting that one of the issues may have been insufficient baseline actinic damage to observe an effect, if present.

In addition to nuclear karyometry, biochemical endpoints for the activity of DFMO were included in this study in an attempt to assure target modulation, which were polyamine assays for putrescine, spermidine, and spermine levels. Once again, surprisingly, these showed no significant differences across the treatment groups. There was no similar direct evaluation of the biochemical target engagement of diclofenac, such as COX-2 activity or tissue prostanoid concentrations, although Jeter and colleagues measured levels of COX-2 expression, which reflects tissue inflammation. Importantly, levels of COX-2 have been reported to decrease in human skin following diclofenac exposure (10), but it is not known whether this predicts clinical efficacy as measured by actinic keratosis regression.

1Departments of Dermatology and Translational Molecular Pathology, Divisions of Internal Medicine and Pathology, MD Anderson Cancer Center, Houston, Texas. 2Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, Texas.

Corresponding Author: Kenneth Y. Tsai, MD Anderson Cancer Center, 2130 West Holcombe, Unit 2951 LSP9.4218, Houston, TX 77030. Phone: 713-563-1943; Fax: 713-563-0110; E-mail: kytsai@mdanderson.org

doi: 10.1158/1940-6207.CAPR-15-0432

©2015 American Association for Cancer Research.
One of the important lessons learned from the pivotal adenoma trial using DFMO and sulindac was the dose desca-
calation approach designed to identify the lowest dose of
DFMO that still yielded evidence of target biomarker modu-
lation (3). Demonstrating that target engagement in skin
occurred following DFMO and diclofenac administration
would have been helpful in explaining null effects of the trial
on ANA. However, the selected biochemical markers are inher-
ently dynamic and given that they were measured in skin
biopsies obtained one to two weeks following drug exposure
here, leaves us unclear if the absence of ANA modulation
derives from insufficient dosing of one or both agents, or
whether the tissue sampling was simply too remote from the
time of agent administration to demonstrate biochemical
modulation.

Trial Design

This trial was not placebo-controlled, which did not allow for
a baseline assessment of the natural history of sun-exposed
skin over the 3-month period, a potential placebo effect notwith-
standing. In addition, previous trials of topical DFMO were of
6-month duration. Therefore, it is possible that insufficient
time elapsed to establish an effect, and the presence of a placebo
control may have shown that the interventions produced a
reduced rate of ANA aberrancy over time. Inclusion of a placebo
arm to assure the natural history of neoplasia is often a valuable
addition to such a trial, and it can typically be accommodated
via unbalanced randomization (e.g., a patient distribution of
1:4, “placebo” to “active”) if patients or an investigator are
concerned about the inclusion of a placebo arm.

Multiple other unforeseen and potential problems may have
also affected the ability to detect a potentially positive outcome.
First, the vehicle for topical DFMO differed from that reported
previously, and instead a commercial product, Vaniqa, was used
due to concerns regarding the stability of DFMO in the investi-
gational ointment. Without a direct comparison of biologic end-
points, it would be difficult to conclude definitively that the same
amount of effective drug was delivered in this commercial for-
mulation versus the investigational formulation of the prior
study.

There have been reports of sex-specific differences in the
efficacy of diclofenac in UV-exposed mice, in which reductions
in tumor burden were observed exclusively in male mice
following exposure to topical diclofenac (11). This brings to
mind the issue of study populations. It is certainly possible that
men may be more likely to benefit than women and as dis-
cussed above, that the baseline level of actinic damage, as
quantified by karyometry, may need to be higher to see a
therapeutic effect of DFMO. Other potential issues such as
medication adherence could be an issue as well, especially as
this was not a therapeutic trial of symptomatic patients benefit-
ing from treatment, and rates of potentially irritating dermato-
logic side effects (i.e., dermatitis and pruritus) were substantial,
especially for diclofenac.

Safety

The investigators reported no significant safety concerns, but
Fig. 1B shows that there was a substantial difference in those not
completing the trial, 9.6% in each of the single-agent arms and
19.2% in the combination arm. The reasons for this difference are
unclear, given that Table 4 suggests that dermatologic adverse
events were of somewhat greater incidence and severity in those
receiving diclofenac alone. Was the apparent difference due to the
frequency or severity of nondermatologic adverse events, chance,
or something else entirely?

Conclusions

Optimally, drugs used for cancer chemoprevention should
meet requirements that are quite distinct from chemotherape-
itics. In addition to proving efficacy in suppressing cancer de-
velopment or progression, chemopreventive agents should be safe
enough for long-term administration in individuals who may
have no evidence of symptomatic disease. As cancers typically
have lengthy latencies, these challenges are often evident, but
potentially addressed through the use of intermediate efficacy
biomarkers at the cellular, biochemical, and/or molecular levels.

The conclusions of this phase IIB trial suggest that further
study is necessary to firmly establish the potential efficacy of
combination diclofenac (or NSAIDs more generally) and
DFMO in prevention of skin cancer and the relative efficacy of
the combination versus that of the individual agents. A number of factors should be considered to determine whether
a positive effect might have been masked in this instance,
including the length of the study (i.e., 30 vs. 90 days), patient
selection (i.e., patients with too little nuclear morphometric
aberrancy at baseline), the validity of the intermediate end-
points assessed relative to the long-term goals of cancer
prevention, and whether target engagement actually occurred
(i.e., there was no biochemical modulation of polyamines or
COX-2 expression, but was that due to insufficient dosing, the
delayed timing of biopsies, or relatively insensitive makers in
the case of COX-2 expression?) with the tested regimen.

Moving forward, it is possible that controlling inflammation
either through dose reduction or concomitant use of steroids may
be required to use karyometry as a robust measure of cancer risk,
although steroids also have chemopreventive effects in some
settings. A deeper mechanistic understanding of the relevant
downstream molecular targets of DFMO may also be useful not
only to identify potentially better biomarkers but also to identify
better agents. Individuals at highest risk for developing skin
cancers are most likely to benefit from chemopreventives in the
short term, and it may be more straightforward to demonstrate
positive findings in these individuals as well.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Received December 14, 2015; accepted December 22, 2015; published online
December 29, 2015.

References

1. Jeter JM, Curiel-Lewandrowski C, Stratton SP, Mydrial PB, Warneke JA,
 Einspahr JG. Phase II randomized study of topical dihydroxymethoxy-
 nitrile and topical diclofenac on sun-damaged skin of the forearm.

2. Glazer ES, Bartels PH, Prasad AR, Yozwiak ML, Bartels HG, Einspahr JG,
 et al. Nuclear morphometry identifies a distinct aggressive cellular
 phenotype in cutaneous squamous cell carcinoma. Cancer Prev Res
When "Effective" Prevention Agents Fail to Elicit Anticipated Effects: Challenges in Trial Design

Kenneth Y. Tsai and Ernest T. Hawk

Updated version
Access the most recent version of this article at:
doi:10.1158/1940-6207.CAPR-15-0432

Cited articles
This article cites 11 articles, 7 of which you can access for free at:
http://cancerpreventionresearch.aacrjournals.org/content/9/2/125.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerpreventionresearch.aacrjournals.org/content/9/2/125.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.