RESEARCH ARTICLES

265 Whole-Genome Sequencing of Salivary Gland Adenoid Cystic Carcinoma
Eleni M. Rettig, C. Conover Talbot Jr, Mark Sausen, Sian Jones, Justin A. Bishop, Laura D. Wood, Collin Tokheim, Noushin Niknafs, Rachel Karchin, Elana J. Fertig, Sarah J. Wheelan, Luigi Marchionni, Michael Considine, Shizhang Ling, Carole Fakhry, Nickolas Papadopoulos, Kenneth W. Kinzler, Bert Vogelstein, Patrick K. Ha, and Nishant Agrawal

275 Influence of Obesity on Breast Density Reduction by Omega-3 Fatty Acids: Evidence from a Randomized Clinical Trial

283 A Computational Modeling Approach for Deriving Biomarkers to Predict Cancer Risk in Premalignant Disease
Andrew Dhawan, Trevor A. Graham, and Alexander G. Fletcher

296 Photopreventive Effect and Mechanism of AZD4547 and Curcumin C3 Complex on UVB-Induced Epidermal Hyperplasia
Alok R. Khandelwal, Xiaohua Rong, Tara Moore-Medlin, Oleksandr Eksbyyan, Fleurette Abreo, Xin Gu, and Cherie-Ann O. Nathan

305 Analysis of Immune Cells from Human Mammary Ductal Epithelial Organoids Reveals Vδ2+ T Cells That Efficiently Target Breast Carcinoma Cells in the Presence of Bisphosphonate
Nicholas A. Zumwalde, Jill D. Haag, Deepak Sharma, Jennifer A. Mirriellees, Lee C. Wilke, Michael N. Gould, and Jenny E. Gumperz

317 Serum Glycans as Risk Markers for Non–Small Cell Lung Cancer
L. Renee Ruhaak, Carol Stroble, Jianliang Dai, Matt Barnett, Ayumu Taguchi, Gary E. Goodman, Suzanne Miyamoto, David Gandara, Ziding Feng, Carlito B. Lebrilla, and Samir Hanash

324 Hepatic Premalignant Alterations Triggered by Human Nephrotoxin Aristolochic Acid I in Canines
Ke Jin, Kun-kai Su, Tong Li, Xia-qing Zhu, Qi Wang, Ren-shan Ge, Zong-fu Pan, Bo-wen Wu, Li-jun Ge, Yi-han Zhang, Yi-fan Wang, Guo-fang Shen, Dan-yan Zhu, Chun-sheng Xiang, Lan-juan Li, and Yi-jia Lou

AC icon indicates Author Choice
For more information please visit www.aacrjournals.org
ABOUT THE COVER

Cancer risk in premalignant diseases, such as Barrett’s Esophagus or Inflammatory Bowel Disease, is frequently over-diagnosed and leads to the over-treatment of patients. These problems are a consequence of the lack of biomarkers that are able to accurately determine cancer risk in premalignant disease. A biomarker is an assayable property of the disease that correlates with the risk of cancer development, examples of potential biomarkers include the proportion of proliferating cells in a biopsy or the amount of a secreted protein. The study by Dhawan and colleagues (page 283) sorts to address a major challenge to biomarker development: how to select the best candidate biomarker from the near-limitless list of candidates. The authors did this by constructing a computational model of cancer development, and using the computer to perform a wide-ranging in silico search of biomarker candidates. The cover image shows a snapshot from the simulation: each colored square represents a cell, and the color of the square indicates how many advantageous (driver) mutations that cell has acquired (red=many, dark blue=few). At each step in the simulation, a cell is chosen to replace a neighbor at a rate proportional to the differential number of advantageous mutations between the two cells. This process leads to ‘clonal expansions’ of patches of neighboring cells with similar genotypes (patches of identically colored cells in the image). The study illustrates how a computational model can provide a high-throughput and low-cost platform for the preliminary assessment of candidates biomarkers, and in so doing diminish the empirical constraints on biomarker development.
Updated version
Access the most recent version of this article at:
http://cancerpreventionresearch.aacrjournals.org/content/9/4

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at <a href="mailto:pubs@aacr.org">pubs@aacr.org</a>.</td>
</tr>
<tr>
<td>Subscriptions</td>
<td></td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link <a href="http://cancerpreventionresearch.aacrjournals.org/content/9/4">http://cancerpreventionresearch.aacrjournals.org/content/9/4</a>. Click on &quot;Request Permissions&quot; which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>