COMMENTARIES

503 Toward a Modern Science of Obesity at Washington University: How We Do It and What is the Payoff?
 Graham A. Colditz, Sarah Gehlert, Deborah J. Bowen, Kenneth Carson, Peter S. Hovmand, Jung Ae Lee, and Kelle H. Moley

509 All Things in Moderation: Prevention of Intestinal Adenomas by DNA Hypomethylation
 Kwang-Ho Lee and Peter W. Laird
 See related article, p. 534

512 Surrogate Markers: Lessons from the Next Gen?
 Brian J. Reid
 See related article, p. 528

REVIEW: MOLECULAR PATHOGENESIS OF PREMALIGNANCY SERIES

518 Early Events in the Molecular Pathogenesis of Lung Cancer
 Humam Kadara, Paul Scheet, Ignacio I. Wistuba, and Avrum E. Spira

RESEARCH ARTICLES

528 Clinical Study of Ursodeoxycholic Acid in Barrett’s Esophagus Patients
 Bhaskar Banerjee, Nicholas J. Shaheen, Jessica A. Martinez, Chiu-Hsieh Hsu, Eugene Trowers, Blake A. Gibson, Gary Della’Zanna, Ellen Richmond, and H-H. Sherry Chow
 See related article, p. 512

534 DNA Hypomethylation Contributes to Genomic Instability and Intestinal Cancer Initiation
 Karyn L. Sheaffer, Ellen N. Elliott, and Klaus H. Kaestner
 See related article, p. 509

547 Prevention of Carcinogen-Induced Oral Cancer by Sulforaphane
 Julie E. Bauman, Yan Zang, Malabika Sen, Changyou Li, Lin Wang, Patricia A. Egner, Jed W. Fahey, Daniel P. Normolle, Jennifer R. Grandis, Thomas W. Kensler, and Daniel E. Johnson

558 The Discovery and Validation of Biomarkers for the Diagnosis of Esophageal Dysplasia and Squamous Cell Carcinoma
 George Couch, James E. Redman, Lorenz Vernisch, Richard Newton, Shalini Malhotra, Sanford M. Dawsey, Pierre Lao-Sirieix, and Rebecca C. Fitzgerald

567 Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis
 Guosong Jiang, Amy D. Wu, Chao Huang, Jiayan Gu, Liping Zhang, Haishan Huang, Xin Liao, Jingxia Li, Dongyun Zhang, Xingrui Zeng, Honglei Jin, Haojie Huang, and Chuanshu Huang

581 The Dose–Response Effects of Aerobic Exercise on Body Composition and Breast Tissue among Women at High Risk for Breast Cancer: A Randomized Trial
 Justin C. Brown, Despina Kontos, Mitchell D. Schnall, Shandong Wu, and Kathryn H. Schmitz

589 Association between Circulating Vitamin D Metabolites and Fecal Bile Acid Concentrations
 Elizabeth T. Jacobs, Mark R. Haussler, David S. Alberts, Lindsay N. Kohler, Peter Lance, María Elena Martínez, Denise J. Roe, and Peter W. Jurutka

598 2-Phenethyl Isothiocyanate, Glutathione S-transferase M1 and T1 Polymorphisms, and Detoxification of Volatile Organic Carcinogens and Toxins in Tobacco Smoke
 Jian-Min Yuan, Sharon E. Murphy, Irina Stepanov, Renwei Wang, Steven G. Carmella, Heather H. Nelson, Dorothy Hatsukami, and Stephen S. Hecht

607 Diallyl Disulfide (DADS), a Constituent of Garlic, Inactivates NF-κB and Prevents Colitis-Induced Colorectal Cancer by Inhibiting GSK-3β
 Shakir M. Saud, Weidong Li, Zane Gray, Mathias S. Matter, Nancy H. Colburn, Matthew R. Young, and Young S. Kim
5MeCDDO Blocks Metabolic Activation but not Progression of Breast, Intestine, and Tongue Cancers. Is Antioxidant Response Element a Prevention Target?
Ronald A. Lubet, Reid Townsend, Margie L. Clapper, M. Margaret Juliana, Vernon E. Steele, David L. McCormick, and Clinton J. Grubbs

Phospho-Aspirin (MDC-22) Prevents Pancreatic Carcinogenesis in Mice
George Mattheolabakis, Ioannis Papayannis, Jennifer Yang, Brandon M. Vaeth, Ruixue Wang, Jela Bandovic, Nengai Ouyang, Basil Rigas, and Gerardo G. Mackenzie

ABOUT THE COVER

It has been long known that garlic has medicinal properties and may even reduce the risk of developing certain cancers including those of the gastrointestinal tract. The chemopreventive effects of garlic may be attributed to the anti-inflammatory properties of garlic’s sulfur-containing constituents which include diallyl disulfide (DADS). When colorectal cancer cells were treated with DADS, NFκB nuclear localization and activity were diminished. Interestingly, this effect of DADS on NFκB suppression was found to be dependent on DADS inhibition of GSK-3β, a positive regulator of NFκB. The figure shown on the cover is the soft agar plate (100 mm) in which SW480 colon cancer cells were pre-treated with DADS (5 µM) plus GSK-3β activator LY294002 (10 µM) for 24 hrs. This simultaneous treatment with DADS (5 µM) and LY294002 (10 µM) abolished anti-tumorigenic effects of DADS, which suggests that this garlic component inactivates NFκB by largely inhibiting GSK-3β. See article by Saud and colleagues (beginning on page 607) for more information.
Updated version
Access the most recent version of this article at:
http://cancerpreventionresearch.aacrjournals.org/content/9/7

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerpreventionresearch.aacrjournals.org/content/9/7. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>