**Diallyl Disulfide (DADS), a Constituent of Garlic, Inactivates NF-κB and Prevents Colitis-Induced Colorectal Cancer by Inhibiting GSK-3β**

Shakir M. Saud, Weidong Li, Zane Gray, Matthias S. Matter, Nancy H. Colburn, Matthew R. Young, and Young S. Kim

Abstract

There is a strong belief that garlic has medicinal properties and may even reduce the risk of developing certain cancers including those of the gastrointestinal tract. The chemopreventive effects of garlic may be attributed to the anti-inflammatory properties of the sulfur-containing constituents of garlic, which includes diallyl disulfide (DADS). Here, we demonstrate that DADS prevented colorectal tumorigenesis in a mouse model of colitis-induced colorectal cancer. Supplementation with 85 ppm of DADS (60 mg daily human equivalent dose) in the diet of FVB/N mice treated with chemical carcinogen azoxymethane (AOM) and colonic irritant dextran sodium sulfate (DSS) resulted in the reduction in tumor incidence, tumor number, and tumor burden by 21.54%, 47.3%, and 66.4%, respectively. Further analysis revealed that mice fed the DADS-supplemented diet resolved the initial DSS-induced inflammation faster than those on the control diet, preventing prolonged inflammation and cellular transformation. Subsequent mechanistic studies in vitro suggest that DADS chemopreventive effects are mediated through NF-κB signaling. When SW480 colorectal cancer cells were treated with DADS, NF-κB nuclear localization and activity were diminished. Interestingly, NF-κB suppression was found to be dependent on DADS inhibition of GSK-3β, a positive regulator of NF-κB. Inhibition of GSK-3β and loss of nuclear NF-κB activity were also observed in vivo in AOM/DSS-treated mice fed a diet supplemented with 85 ppm DADS. Our results indicate that DADS can prevent tumorigenesis by suppressing inflammation, a process largely involving GSK-3β inhibition and consequential reduction in NF-κB nuclear localization. *Cancer Prev Res; 9(7); 607–15. ©2016 AACR.*

Introduction

Colorectal cancer is the third leading cause of cancer-related mortality in the United States for both male and female (1). Inflammation has been known to play a pivotal role in the initiation and progression of various tumors including those in the colon (2-4). Individuals with intestinal inflammatory conditions such as Crohn disease and ulcerative colitis are at increased risk for developing colorectal cancer (4-7). There are many bioactive food components with anti-inflammatory activity that are being investigated in relation to the management and treatment of inflammatory bowel conditions that may provide a feasible and safe way to reduce colorectal cancer risk (8, 9). The sulfur-containing constituents derived from garlic, including diallyl disulfide (DADS) are such examples that have been previously reported to exert anti-inflammatory effects (10). DADS has been demonstrated to alleviate inflammation in preclinical models of inflammatory bowel disease by inhibiting the production of pro-inflammatory cytokines, including IL6 (11). The NF-κB is a pro-inflammatory transcription factor that is hypothesized to promote tumorigenesis by regulating the expression of genes that are involved in cell proliferation, apoptosis, and metastasis (12–14). NF-κB is constitutively active in patients with inflammatory bowel disease and may, in part, explain the increased incidence of colorectal cancer observed in these individuals (15). While NF-κB has become a promising target for anticancer therapy, the complexity of NF-κB regulation has made it challenging to develop agents to suppress its activation. The canonical pathway involves various steps including the degradation of the inhibitor of NF-κB (IκB) followed by nuclear translocation of NF-κB and activation of gene transcription (16). A variety of agents have been shown to indirectly suppress NF-κB by influencing key regulatory elements of the canonical pathway, including kinase subunits of the IKK complex, which is responsible for the degradation of IκBs (17).

Glycogen synthase kinase-3 (GSK-3) is a serine threonine kinase comprising two homologous proteins, GSK-3α and GSK-3β, which are products of highly similar but different genes (18). GSK-3β is better characterized than GSK-3α and possesses both tumor suppressor and tumor-promoting activity depending on the cellular context (19, 20). Classically, GSK-3β is regarded primarily as a tumor suppressor due to its role in the Wnt signaling cascade where it phosphorylates β-catenin resulting in its ubiquitin-mediated degradation, thus preventing its activation of the canonical Wnt pathway.
nuclear translocation and subsequent transcription of proto-oncogenes (18). However, emerging evidence has shown that GSK-3β can also promote cancer by activating the NF-κB signaling cascade by enhancing the transcriptional activity of NF-κB in the nucleus (20). Studies have shown that inhibiting GSK-3β attenuates proliferation and induces apoptosis in colorectal cancer cells (19, 21).

Epidemiologic evidence has suggestive of the benefit of garlic intake in preventing colorectal cancer with at least one interventional study revealing modest benefit of garlic in preventing colorectal adenoma recurrence (22). To further investigate the anti-inflammatory activity of garlic and its ability to prevent colorectal cancer, we assessed the effect of one of the sulfur-containing constituents DADS in a mouse model of colitis-induced colorectal cancer. We found that dietary supplementation with DADS significantly reduced colorectal tumorigenesis in mice treated with azoxymethane (AOM) and dextran sulfate sodium (DSS). DADS exerted anti-inflammatory effects resolving DSS-induced inflammation in these mice. DADS also inhibited NF-κB activation and nuclear translocation, which we were able to demonstrate, was dependent on the inhibition of GSK-3β in human colorectal cancer cells.

Materials and Methods

Animal studies

All mouse experiments were conducted according to methods described previously (23) and agreed to and regulated by the Animal Care and Use Committee of the National Cancer Institute (Frederick, MD). Briefly, 6-week-old pathogen-free FVB/N mice were injected with AOM (Sigma) intraperitoneally at a dose of 10 mg/kg body weight in 0.1 mL of saline (day 0, Fig. 1A). Ten days later, mice were treated with 2% DSS (36,000 to 50,000 kDa, MP Biomedicals LLC), dissolved in normal drinking water (reverse osmosis–purified water) for 7 days and then switch back to normal drinking water (day 17, Fig. 1A). Three days after completion of DSS treatment (day 20, Fig. 1A), the mice were evenly sorted by change in body weight into four diet groups to ensure effects of the DSS were evenly represented in each of the different diets. Mice were single caged and either maintained on AIN-93G–purified diet from Harlan Teklad (day 20) or started on an AIN-93G diet supplemented with 21, 42, or 85 ppm DADS (Sigma; Supplementary Table S1). Mice were allowed to eat ad libitum. Food consumption and body weight were measured throughout the entire study. Mice were euthanized on day 52 (Fig. 1A) and colon tissue was harvested and stained with 0.2% methylene blue in PBS. The tumors visualized by staining were counted using dissecting microscope (Fig. 1B).

DADS human equivalent dose and tolerance

The daily human equivalent dose (HED) was calculated using body surface area normalization method in which the animal dose is converted to a HED by the following formula (24).

\[
\text{HED} \left( \text{mg/kg} \right) = \frac{\text{Animal dose} \left( \text{mg/kg} \right) \times \text{Mouse Km factor} / \text{Human Km factor}}{\text{Food consumption} \left( \text{kg/week} \right) / \text{mean}} \div 7.
\]

The Km factor for mouse and human is 3 and 37, respectively. The HED of 21, 42, 85 ppm dietary DADS was determined to be 15, 30, and 60 mg/kg daily, respectively, and was well tolerated with no obvious toxicity.

Histopathology

Colonic tissue was processed utilizing methods described previously (23). For histologic analysis, colonic sections were stained with hematoxylin and eosin (H&E) and blindly evaluated by a board-certified pathologist and diagnosed applying the criteria of a consensus report on murine colon tumors (25). Briefly, tumors were characterized as an adenoma or carcinoma and semiquantitatively scored on a number of criteria including: severity of infiltrate (1, mild; 2, moderate; 3, severe), distribution of leukocytes (1, focal/local; 2, multifocal; 3, diffuse), distribution of epithelial proliferation (1, focal/local extensive; 2, multifocal; 3, diffuse), severity of necrosis (1, mild; 2, moderate; 3, severe), dysplasia (1, low-grade multifocal; 2, low-grade multifocal; 3, high-grade multifocal; 4, high-grade multilocal). A score of 0 was assigned for each criterion not represented in the section. The summation of the five criteria yielded a total disease score per mouse.

IHC

IHC was performed utilizing methods described previously (23). The primary antibodies and dilutions were as follows: pGSK3αβS32,β37 (Cell Signaling Technology), 1:50; Ki-67, 1:100; pNF-κB P65S536 (Abcam), 1:100; CD45 (BD Biosciences), 1:50. All slides were digitized using Aperio Scanscope CS2 (Leica Biosystems) and evaluated using the Aperio analysis package, which includes highly advanced algorithms for quantifying % of nuclear staining, and staining intensity quantification ranging from 0 (negative) to 3 (strongly positive).

Cell culture

Human colorectal cancer SW480 cell line was obtained from ATCC, which prior to distribution was tested and authenticated by the manufacturer using Identifier STR genotyping. Cells were cultured and stored according to the manufacturer’s instructions and used between passages 5 to 10. Once resuscitated, cell lines were cultured in RPMI supplemented with 10% FBS, 100 U/mL penicillin, and 100 mg/mL streptomycin at 37 °C in humidified air with 5% CO2 never passaged over a period exceeding 2 months to ensure authenticity. DADS (>80% purity by high-performance liquid chromatography) was dissolved in 10% DMSO (Diallyl sulfide) and LY294002 (Cell Signaling Technology) was used in cell culture experiments.

Western blot analysis

Approximately, 30 to 80 mg of nuclear or cytoplasmic protein that was isolated from SW480 colorectal cancer cells using NE-PER nuclear and cytoplasmic extraction kit (Thermo Scientific) was loaded and separated by SDS-PAGE, transferred to nitrocellulose membrane, and probed with the following antibodies overnight at indicated dilutions: pNF-κB P65 S536, 1:1,000, NF-κB (P65), 1:1,000, pGSK3αβS32,β37, 1:1,000, pGSK3αβS32,β37, 1:2,000, GSK3β, 1:1,000, COX-2, 1:1,000, pIKKβ S32, 1:1,000, IKKγ, 1:1,000, pIKKα/IKKβ S176,180, 1:1,000, IKKα/IKKβ, 1:1,000, pAkt S473, 1:2,000, Akt, 1:2,000, β-Catenin, 1:1,000, pβ-Catenin S33/37,1211, 1:1,000 (Cell Signaling Technology). Each membrane was probed with P84 (Gene Tex) to ensure consistent loading of nuclear protein and β-actin, 1:5,000 (Sigma) to ensure consistent loading of cytoplasmic protein.
Soft agar assay

SW480 cells were seeded onto 100-mm plates and pretreated with either DMSO vehicle (<1%) or DADS (5 μmol/L) for 24 hours. Cells were trypsinized and seeded at 30,000 cells in 2× RPMI media. Cell suspension was added 1:1 with 0.5% agarose (2 mL/well in a 6-well plate) and constituted the top layer. The bottom layer consisted of 2 mL of 1.2% agarose. The cells were maintained in an incubator for 14 days and the colonies were scanned and counted with GelCount (Oxford Optronix Ltd).

Cell proliferation assay

The MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay was performed according to methods described previously (26).

Statistical analyses

All data are presented as the mean ± SD. The significance of the difference between groups was evaluated by one-way ANOVA or Student t test, and multiple comparisons with Prism 5.0 software. P < 0.05 was considered to be statistically significant.

Figure 1.

Diallyl disulfide (DADS) inhibited AOM/DSS-induced tumorigenesis. A, timeline showing experimental time points. Male and female FVB/N mice were treated with a single injection AOM (10 mg/kg) on day 0 followed by one cycle of 2% DSS from day 10 to 17. On day 20, mice were grouped by weight loss and randomly started on experimental diets that included AIN93G diet supplemented with 0, 21, 42, or 85 ppm of DADS. Mice were euthanized on day 52. B–D, analysis of colorectal tissue collected at day 52. B, representative macroscopic images of colons stained with 0.2% methylene blue in PBS displaying contours of adenomatous polyps as shown by arrows. Mice supplemented with 85 ppm DADS developed less adenomatous polyps compared with control. C, adenomatous polyps per mouse were counted and presented with SE. Tumor burden in mm³/mouse was estimated by geometric mean and expressed with SE. *, P < 0.05; **, P < 0.01 indicates a significant difference compared with control group as determined by t test. D, histopathology showed a decrease in inflammation in DADS-fed mice. Colorectal tissue collected on day 52 were stained with hematoxylin and eosin and semiquantitatively scored for the degree of inflammation and colonic tissue damage produced after AOM/DSS exposure; severity of infiltrate (1, mild; 2, moderate; 3, severe), distribution of leukocytes (1, focal/local; 2, multifocal; 3, diffuse), distribution of epithelial erosion (1, focal/local extensive; 2, multifocal; 3, diffuse), severity of necrosis (1, mild; 2, moderate; 3, severe), dysplasia (1, low-grade unifocal; 2, low-grade multifocal; 3, high-grade unifocal; 4, high-grade multifocal). A score of 0 was assigned for each criterion not represented in the section. *, P < 0.05; **, P < 0.01 indicates a significant difference compared with control group as determined by t test. E, diallyl disulfide (DADS) inhibited inflammation in vivo. Cohorts of AOM/DSS mice on respective experimental diets were weighed approximately every 2 to 3 days, and the values are expressed as change of weight (kg) from that of the previous measurement. *, P < 0.05; **, P < 0.01 indicates a significant difference compared with AOM/DSS control group as determined by t test. F, photomicrographs (20x) of colon sections at day 52 stained with hematoxylin and eosin (top row) and anti-CD-45 (1:50) IHC (bottom row) revealed decreased inflammation in mice on diet supplemented with 85 ppm DADS. Scale bar, 100 μm.
Results

DADS prevented tumorigenesis in AOM/DSS–treated mice

In the dinitrobenzenesulfonic acid (DNBS)-induced colitis mouse model, DADS treatment for 2 days was able to exert an anti-inflammatory effect reducing the expression of proinflammatory cytokines (11). To determine whether the anti-inflammatory properties of DADS translate to a decreased risk of developing colorectal cancer, we fed an equal number of FVB/N male and female AOM/DSS-treated mice with a diet supplemented with 21, 42, or 85 ppm DADS (HED of 15, 30, or 60 mg/kg, respectively) daily for 5 weeks. FVB/N mice exposed to the chemical carcinogen AOM and gut irritant DSS present with a number of adenomatous lesions localized in the large bowel with the potential to progress to adenocarcinomas (27, 28). Supplementation starting 3 days post-DSS administration with 42 and 85 ppm DADS resulted in a significant decrease in the total number of adenomatous polyps by 34.3% ($P < 0.01$) and 47.3% ($P < 0.01$), respectively (Fig. 1C). In addition, 21, 42, 85 ppm DADS supplementation resulted in a significant reduction in tumor burden by 24.2% ($P < 0.05$), 33.4% ($P < 0.01$), and 66.4% ($P < 0.01$), respectively (Fig. 1C). Although in this study, tumorigenesis did not progress to adenocarcinomas as seen in previous studies, histopathologic analysis revealed that the lesions in mice treated with 85 ppm were less transformed with the dysplasia frequently less than high-grade ($P < 0.01$; Fig. 1D). Furthermore, 6 of 23 (24%) of mice treated with

![Figure 2.](image)

**Figure 2.** Diallyl disulfide (DADS) inhibited nuclear localization of NF-κB. A, DADS suppressed the proliferation of SW480 colon cancer cells. SW480 cells were seeded into 96-well plates and treated with vehicle (DMSO), 2.5 μmol/L, 5 μmol/L, 10 μmol/L, 20 μmol/L, or 40 μmol/L DADS. After 24 hours following treatment, the cell viability was determined using the MTT assay. Absorbance at 570 nm was detected with Micro plate reader. Data presented as mean of three independent experiments. **P** < 0.05, ‘’**P’’ < 0.01 indicates a significant difference compared with control group by t test. B and C, Western blot analyses of cytoplasmic (left) and nuclear (right). SW480 CRC cell lysates probed with NF-κB (P65) and p-5336–NF-κB (P65), COX-2, p-S32-IκBα, IκBα, p-S175/180-IκKα/β, and IκKα/β. Cells were treated with vehicle (DMSO), 2.5 μmol/L, 5 μmol/L, 10 μmol/L, or 20 μmol/L DADS for 24 hours. B, DADS induced a dose-dependent decrease in total and S336 phosphorylated nuclear NF-κB (P65). C, IκBα and IκKα/β phosphorylation were unaffected by DADS treatment in both cytoplasm and nucleus (nuclear staining not presented). β-Actin was used for a cytoplasmic loading control and p84 displayed as nuclear loading control. Each Western blot analysis shown is a representative example of at least three independent experiments.
85 ppm DADS were tumor-free with normal pathology, compared with 1/22 (4.5%) in control (data not shown). The overall response to DADS did not vary between male and female test mice. Taken together, DADS dietary supplementation prevented the development of colitis-induced colorectal cancer in AOM/DSS mouse model.

DADS shortened the recovery time from DSS-induced weight loss and thereby prevented prolonged inflammation

FVB/N mice exposed to 2% DSS will develop colitis, which has been extensively characterized by various techniques including MRI and the examination of the severity of inflammation correlates with loss in body weight (28, 29). In animals fed the control diet, exposure to one cycle of 2% DSS showed a reduction in body weight peaking at 7 to 9 days post-DSS exposure (Fig. 1E) with a gradual recovery as indicated by reduction in body weight peaking at 7 to 9 days post-DSS exposure. DADS dietary supplementation with DADS beginning on day 20 resulted in an attenuation of colitis-induced weight loss (not significant). More importantly, mice treated with 42 ppm and 85 ppm DADS-supplemented diets had a significantly (P < 0.05) higher recovery rate as measured by weight gain (Fig. 1E, day 27–31). Inflammation can persist several months after DSS administration mediated by several factors, including PTGS2 (COX-2) expression and NF-κB activity, which parallels the process of tumorigenesis (30). The prolonged inflammation can be visualized histologically by H&E staining and by staining for CD45, a receptor-linked protein tyrosine phosphatase expressed on leukocytes. Histopathologic analysis revealed that DADS supplementation at 85 ppm decreased the severity and distribution of leukocyte infiltrate (P < 0.01), epithelial erosion (P < 0.05), and the degree of cell dysplasia (P < 0.01; Fig. 1D), which was confirmed by the regain of structural shape and the decrease in CD45+ cells in colonic epithelium (Fig. 1F). These results suggest that mice treated with DADS recovered from DSS-induced colitis faster than mice in the control diet preventing prolonged inflammation, which may in part explain the chemopreventive effect of DADS on CRC tumorigenesis.

DADS inhibited proliferation of SW480 colorectal cancer cells in vitro

To elicit the molecular mechanisms of DADS chemopreventive activity, the human CRC SW480 cell line was treated with varying concentrations of DADS (2.5 μmol/L, 5 μmol/L, 10 μmol/L, or 20 μmol/L) for 24 hours. DADS induces chemopreventive activity, the human CRC SW480 cell line was treated with varying concentrations of DADS (2.5 μmol/L, 5 μmol/L, 10 μmol/L, or 20 μmol/L) for 24 hours. DADS induced inhibition of GSK-3 as shown by increased phosphorylation at S21/9 which was more pronounced in the nuclear fraction. DADS also reduced expression and phosphorylation at S33/S77/41 of β-catenin, a major substrate of GSK-3β, confirming the suppressive effect of DADS on GSK-3β activity. β-Actin was used a cytoplasmic loading control and p84 displayed as nuclear loading control. Each Western blot analysis shown is a representative example of at least three independent experiments.

DADS inhibited NF-κB nuclear translocation and reduced PTGS2 (COX-2) expression in vitro

NF-κB activation is essential for development of colonic adenomas in AOM/DSS-treated mice (35). NF-κB contributes to tumorigenesis by inducing genes that are proinflammatory such as PTGS2 (COX-2) (36). The P65/p50 heterodimer is the most abundant NF-κB complex in the cell and is regulated by the so-called canonical pathway, with phosphorylation of P65 at serine 536 being important for its activity (37, 38). In the current study, we found a dose-dependent reduction in phosphorylated-NF-κB (P65)536 in the nucleus of SW480 cells treated with DADS, which corresponded with a reduction in PTGS2 (COX-2) protein expression in the cytoplasm (Fig. 2B).
Activation of the canonical NF-κB pathway, indicated by phosphorylation of IκBα and IKKβ appear to be unaffected by DADS treatment (Fig. 2C). The DADS-dependent reduction of phosphorylated P65 in the nucleus and the corresponding increase in phosphorylated P65 in the cytoplasm suggest DADS treatment is blocking nuclear translocation of P65.

DADS inhibited GSK-3 activity

Glycogen synthase kinase-3 (GSK-3) protein that consists of two isoforms (α and β) is present in both the cytoplasm and nucleus and is an important regulator of the inflammatory process. GSK-3(α/β) is activated by phosphorylation of Tyrosine (279/216) and is inactivated by phosphorylation of Serine (21/9). GSK-3β knockout mice are embryonically lethal (21). GSK-3β promotes the activation of NF-κB leading to the survival of cells exposed to TNFα or tumor cells in which the NF-κB pathway is constitutively active (39). DADS treatment inhibited GSK-3β in the nucleus as shown by increased expression of pGSK3β(S9) in the nuclear fractions (Fig. 3). Furthermore, GSK-3β was fully phosphorylated at Serine 9 even with the lowest dose of DADS (2.5 μmol/L; Fig. 3) suggesting that the suppressive effects of DADS on GSK-3β activity could be direct and/or highly sensitive. The inactivation of GSK-3β can occur by a number of kinases most notably by Akt (40). There was a modest increase in Akt activity (pAkt(S473)) in the cytoplasm at the highest dosages of DADS; however, GSK-3β inhibition is seen even at the lowest dose of DADS and therefore it is unlikely that GSK-3β inhibition is mediated through Akt (Fig. 3). Thus, it is possible that another kinase is responsible for GSK3β inhibition or that DADS inhibits GSK-3β through a direct interaction.

DADS inhibition of NF-κB and COX-2 was GSK-3β dependent

To determine whether DADS suppression of NF-κB activity is dependent on GSK-3β inhibition, we treated SW480 cells with DADS together with a GSK-3β activator, LY294002. When cells were treated both with LY294002 and DADS, the decreased phosphorylation and nuclear translocation of P65-NF-κB, as well as the COX-2 inhibition, previously observed with DADS only treatment, was attenuated (Fig. 4A). These results suggested that DADS-mediated NF-κB inhibition is GSK-3β-dependent. To evaluate whether the GSK-3β-dependent inhibition of NF-κB correlated with a decrease in tumorigenicity, we employed the use of a soft agar assay to monitor anchorage-independent three-dimensional colony formation. This method can deliver results that are comparable with those obtained when injecting tumorigenic cells into nude mice (41). Treatment with 5 μmol/L DADS was sufficient to prevent the ability of SW480 cells to form colonies in soft agar. The simultaneous treatment with a GSK-3β activator LY294002 (10 μmol/L) and DADS (5 μmol/L) abolished anti-tumorigenic effects of DADS (Fig. 4B). These results show that...
DADS prevents tumorigency in vitro, which appears to be dependent of GSK-3β inhibition and likely to be contributed to the inhibition of the NF-κB pathway.

**DADS inhibited GSK-3β and NF-κB in vivo**

To determine whether the effects of DADS on GSK-3β inhibition and NF-κB localization seen in SW480 cells can be translated in vivo, we measured using IHC phosphorylated GSK-3(α/β) at Serine (21/9) and nuclear localization of phosphorylated NF-κB (P65; Fig. 5A and B). Furthermore, the changes correlated with an 86.2% decrease in Ki-67 expression, a marker of cellular proliferation (Fig. 5C). These results further confirm that DADS inhibits GSK-3β and suppresses the activation and nuclear localization of NF-κB, which may in part contribute to the chemopreventive activity of DADS.

**Discussion**

Epidemiologic evidence has shown an association between garlic intake and decreased risk of developing colorectal cancer (42, 43). Likewise, considerable experimental evidence has shown that garlic sulfur-containing constituents, such as diallyl disulfide (DADS), can reduce the growth of colon tumor cells in animals (44, 45). To our knowledge, the underlying mechanism explaining the antitumorigenic effects of DADS has yet to be elucidated. In the current study, we examined the hypothesis that DADS exerts its protective effects against colorectal tumors by suppressing inflammation, utilizing the colitis-induced colorectal cancer AOM/DSS mouse model. Our results indicated that dietary supplementation with 42 and 85 ppm DADS (HED of 30 and 60 mg/daily, respectively) for 32 days resulted in a significantly shortened recovery time from the DSS-induced inflammatory insult and significantly reduced number and size of colorectal tumors in AOM/DSS-treated mice.

In vitro studies using the human CRC SW480 cell line revealed that the tumor-suppressive effect of DADS may, in part, be mediated by GSK-3β–dependent NF-κB inhibition.
Constitutive NF-κB activity in inflammatory bowel disease is associated with an increased risk of developing colorectal cancer (15). The NF-κB heterodimeric REL-A (P65)-p50 complex is sequestered in the cytoplasm under nonstimulated conditions by IκB. Proinflammatory cytokines within the tumor microenvironment, such as TNF1 and IL1, induce phosphorylation of IκB by IKK complexes, which allows the P65:p50 heterodimer to be released and translocate to the nucleus where they activate various target genes (16). IκKs and IκB inhibitors are the mainstay of targeting NF-κB activity by inhibiting IKK activity, increasing concentrations of DADS had no effect on either IκK or IκB, indicating the upstream canonical pathway is not involved in DADS inhibition of NF-κB. There was, however, a decrease in phosphorylated P65 (NF-κB-P65\(^{55S}\)) in the nucleus with a corresponding increase in the cytoplasm, suggesting that the suppressive effect of DADS on NF-κB activity is likely due to its ability to inhibit the nuclear translocation of the phosphorylated P65. This finding was consistent with the decrease in NF-κB phosphorylation in colon tissue of DADS-fed mice.

GSK-3 is a serine/threonine kinase that has diverse cellular functions and numerous substrates. In our study, DADS, a major anti-inflammatory component in garlic, inactivated GSK-3 (\(\tau/\beta\)) by blocking its phosphorylation of serine residue 21\(\tau/27\) and p50, resulting in reduced nuclear expression and translocation of the active RelA P65:p50 NF-κB heterodimer. Our notion that DADS inhibition of GSK-3 is responsible for the cytoplasmic retention of NF-κB is further supported by an in \(\nu\)ivo study that demonstrated that administration of GSK-3 inhibitors could effectively downregulate NF-κB activity and significantly attenuate TNBS-induced colitis in rats (49).

In conclusion, we have provided evidence that garlic constituent DADS interferes with nuclear translocation of pro-inflammatory transcription factor NF-κB and the expression of tumorigenic enzyme COX2 via GSK-3 (\(\tau/\beta\)) inactivation. Future studies will be needed to determine the exact mechanism of DADS-induced GSK-3 (\(\tau/\beta\)) inactivation. In addition, there are over 30 known organosulfur compounds in garlic (50) that should also be explored further. The importance of dietary components including DADS and metabolic enzymes such as GSK-3 (\(\tau/\beta\)) in maintaining homeostasis of intracellular microenvironment to prevent perpetual inflammatory pathways therefore cannot be overemphasized.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: S.M. Saud, N.H. Colburn, M.R. Young, Y.S. Kim

Development of methodology: S.M. Saud, M.R. Young

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S.M. Saud, Z. Gray, M.R. Young

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S.M. Saud, M.S. Matter, M.R. Young, Y.S. Kim

Writing, review, and/or revision of the manuscript: S.M. Saud, M.S. Matter, M.R. Young, Y.S. Kim

Study supervision: M.R. Young

Other (doe some experiments on Western blotting): W. Li

Other (contributed to the conception and design and to the writing and revision of the manuscript as a scientist Emerita at NCJ): N.H. Colburn

Acknowledgments

This humble work is dedicated in memory of the late Dr. John A. Milner who pioneered the notion that nutrition can provide a preventative touch in the fight against cancer.

Grant Support

All coauthors were supported by the National Cancer Institute, and by the NIH intramural program. ZIA BC011159. In addition, the China Postdoctoral Science Foundation also supported W. Li (grant number: 20110490559, 201250193).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 22, 2016; revised April 13, 2016; accepted April 14, 2016; published OnlineFirst May 2, 2016.
Diallyl Disulfide (DADS), a Constituent of Garlic, Inactivates NF-κB and Prevents Colitis-Induced Colorectal Cancer by Inhibiting GSK-3β

Shakir M. Saud, Weidong Li, Zane Gray, et al.


Updated version
Access the most recent version of this article at:
doi:10.1158/1940-6207.CAPR-16-0044

Supplementary Material
Access the most recent supplemental material at:
http://cancerpreventionresearch.aacrjournals.org/content/suppl/2016/04/30/1940-6207.CAPR-16-0044.DC1

Cited articles
This article cites 50 articles, 10 of which you can access for free at:
http://cancerpreventionresearch.aacrjournals.org/content/9/7/607.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerpreventionresearch.aacrjournals.org/content/9/7/607. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.