Disease Interception: Myths, mountains, and mole hills.

William N. Hait, M.D., Ph.D. 1
Janssen Research and Development LLC.
920 US Highway 202
Raritan, NJ 08869
908-927-3516

Peter Lebowitz, M.D., Ph.D.
Janssen Research and Development LLC.
1400 McKean Road
Spring House, PA 19002
215 628-5043

Running Title: Disease Interception
Key words: Cancer interception, prevention, surrogate endpoints
Address reprint requests to William N. Hait, M.D., Ph.D. 2
Janssen Research and Development LLC.
920 US Highway 202n
Raritan, NJ 08869
908-927-3516
whait@its.jnj.com
Conflicts of interest: none
Abstract

Malignant diseases develop slowly over time and are often preceded by identifiable pre-malignancies. As malignancy progresses so does genomic complexity and the ability of cancers to evade most therapeutic interventions. Accordingly, with some notable exceptions, a relatively low percentage of advanced cancers are effectively treated and even fewer are cured. Despite this appreciation, much less attention has been paid to intercepting the disease process compared to that of treating well-established and refractory disease. One frequently cited reason is that the pharmaceutical industry is not interested in these pursuits. In this commentary we attempt to define the true hurdles, the degree of difficulty inherent in each, and some important approaches to be considered.
Conventional wisdom suggests that industry is not interested in developing products for prevention or disease interception because the hurdles are simply too high. This is despite compelling evidence that as a neoplasm progresses it gets more difficult to treat due to increased genomic complexity (1), which allows tumors to adapt to and evade therapeutic interventions (Table 1). Budish et al (2) provide an economic explanation for the low investment in prevention research that was highlighted by a front page article in the New York Times that trumpeted, “Why Preventing Cancer is Not the Priority in Drug Development” (3).

These perceived hurdles include myths, mountains and molehills such as: 1. the drugs will be used chronically and therefore must be impossibly safe (myth); 2. the clinical trials are too long and too expensive (molehill); 3. the regulatory agencies will make it difficult to gain approval (molehill); 4. the market is large but the prices will be low and therefore difficult to make a profit (myth) and; 5. diagnostics are not sufficiently sensitive or specific to identify those individuals who are at risk greatest risk of progressing to disease versus those who will never have significant disease (mountain).

As is often the case, conventional wisdom is only partially true and overly simplistic. In addition, the seductive simplicity of this nihilistic view is damaging to disease interception efforts that could lead to transformative medical developments. It is only by exploring the complexity of this issue that a path forward emerges. So while there are hurdles, each one needs to be understood. Some perceived obstacles are myths that we need to debunk. Others are molehills that we need to walk over. Finally, some are mountains that we need to climb. It is only by knowing the difference between the myths, mole hills, and mountains that we can uncover the path forward.

Chronic use/ impossibly safe
Several prevention drugs are used daily for long periods of time including statins for treatment of hypercholesterolemia and prevention of atherosclerotic vascular disease, selective estrogen receptor modulators (SERMs) such as tamoxifen and raloxifene for prevention of breast cancer and bisphosphonates for the prevention of osteoporotic fractures. All have untoward side effects including muscle disorders for statins, thrombosis and uterine cancer for SERMS and jaw necrosis for the bisphosphonates. In contrast, other products do not require daily use, such as the hepatitis B and human papilloma virus vaccines for the prevention of viral infections that lead to hepatocellular carcinoma and cervical, respectively. While many current treatments of serious diseases require systemic and chronic use, novel approaches and technologies are being developed to prevent disease using short-term, intermittent, localized or low-dose therapy (4). Nonetheless, safety is always critically important, and we recognize that in many instances this is amplified when drugs must be used chronically.

Studies are long and expensive

This oversimplification is based on the concept that surrogate endpoints cannot be validated for use for regulatory approval or ultimately for reimbursement. Yet, the original approval for the statins was based on a biomarker that was initially unproven to be a surrogate for prevention of cardiovascular mortality (5). Recently, approvals were granted by the FDA for two proprotein convertase subtilisin–kexin type 9 (PCSK9) inhibitors (alirocumab and evolocumab), based on lowering of LDL-cholesterol in patients at high risk for heart attack or stroke, and who were receiving maximally-tolerated doses of a statin. For alirocumab alone, the sponsor was willing to conduct five placebo-controlled randomized trials involving 2,476 participants. Both alirocumab and evolocumab, which are given by injection, cause large reductions in LDL cholesterol levels, as compared with placebo (39% to 62% reduction for alirocumab and 47% to 56% for evolocumab). These drugs received standard approval without...
completion of ongoing studies that are designed to demonstrate clinical benefit beyond lowering the surrogate marker.

However, while the use of surrogate endpoints to predict clinical benefit is important in advancing prevention, this approach comes with caveats, i.e., sometimes surrogate endpoints do not perform as expected even when there is a strong scientific rationale. One example is the use of class 1 anti-arrhythmics in the setting of post myocardial infarction. These agents decrease aberrant ventricular activity (a surrogate for serious arrhythmias) but this practice ultimately was found to cause an increase in mortality(6). The key learning here is not to abandon surrogate endpoints. This would ignore the successes of new therapies that have been provided to patients many years earlier using surrogate endpoints such as cholesterol, blood pressure, blood glucose, and tumor response. When one considers these examples, it is likely that far more people have benefited from acceleration of new therapeutics with the use of surrogate endpoints than those that have been harmed. However, the use of surrogate endpoints requires a thoughtful assessment of their ability to predict the magnitude of clinical benefit. This, however, should not be interpreted as an impossible hurdle to overcome. For example, after the first HMG-CoA reductase inhibitor, compactin, entered the clinic, studies were discontinued because of severe animal toxicities (the true cause remains uncertain). Merck then promptly stopped its studies of lovastatin (Mevacor®), a structurally similar natural product, and carried out additional animal studies and clinical studies in ultra-high risk patients. Ultimately, the drugs were proven to be well-tolerated and the statin era was begun.

Regulatory agencies

As noted above, regulators have precedent for approving drugs based on surrogate endpoints. This is particularly true for oncology indications, where response rate and progression endpoints have often
been used for approval. Agencies are far more open to creative discussions then some might believe and can offer constructive ideas to help industry meet an important unmet medical need.

Profitability

Lipitor, a disease interception product, has been one of the most lucrative drugs in history. In fact, during its patent life, Lipitor sales topped $130 billion, which is double that of the number two drug, clopidogrel (Plavix®), which is also indicated to prevent complications of atherosclerotic cardiovascular disease (7). Yet, many overlook this fact when considering the future of disease interception. Similarly, Alendronate (Fosamax®), a bis-phosphonate approved for both the treatment and prevention of osteoporosis, produced peak sales of over $3 billion dollars: “Although the number of patients at risk for a specific malignancy would be much smaller than the population at risk for atherosclerotic vascular disease or osteoporosis, this smaller patient population may allow for a somewhat higher price if there was an overall health economics benefit from intercepting a cancer-causing process”:

Some real problems (Mountains)

In our experience, there are real problems that must be overcome.

Lack of validated targets

A major problem to be overcome for the development of prevention and interception drugs in non-communicable disease is the lack of validated targets. Here again, cancer represents one of the most compelling areas for investigations since for most malignancies there is a well-defined pre-malignant condition for both solid and even hematological diseases. For example, in situ carcinomas, also referred to as intraepithelial malignancies, are histologically identifiable. In addition, the transition from a normal but susceptible epithelium to colon cancer has been elegantly described (8). Yet, limited
information currently exists on the altered genome of high risk colonic polyps. Similarly, pre-malignant conditions of the oral epithelium and bronchi are well described (e.g., leukoplakia and atypical adenomatous hyperplasia, respectively), yet far less information exists as to the potentially actionable targets for these entities (9). Myeloma is preceded by a progression from polyclonal production of plasma cells to monoclonal proliferations that begin with a monoclonal gammopathy of undetermined significance, through smoldering myeloma, which is then further stratified according to risk. Again, the actionable targets in these conditions are far less clear than even the relatively little we know for the full-blown malignancy, multiple myeloma.

Existence of validated surrogate endpoints.

If survival is the only endpoint, then conventional wisdom would hold as these trials could be very long, expensive and difficult to conduct effectively as the results would be confounded by the variety of treatments that patients would receive following progression. For example, assume that smoldering myeloma was treated with a new drug versus a standard of care regimen and after two years there was a marked decrease in progression to multiple myeloma for the experimental treatment. Upon relapse in both groups, patients would be treated with several different types of therapy that could not be legitimately proscribed at the start of the smoldering myeloma study. If these drugs were effective, then the benefit from treating the pre-malignancy might be confounded.

Diagnostic Tests

Today, there are a limited number of diagnostic tests that can identify those individuals with pre-malignancies who are most likely to progress (10). This concept fails to take into account how much things have and will change. For example, before the roentgenogram was invented, lung cancer was often a post mortem diagnosis. With the advent of the chest x-ray, more people were diagnosed while still alive and potentially operable. With high-resolution CT and PET scanning, the disease and even the
pre-malignancies are now diagnosed. In addition, we can now classify carcinoma in situ of the breast histologically according to risk, and data are emerging using transcriptomics that can further stratify patients risk of progression to invasive disease. Similar work is ongoing in prostate cancer, colon cancer, and many others. One can readily envision a time in the near future where those individuals at the highest risk of disease progression will be readily identified and targeted for more precise treatments. At the same time, those at low risk will be spared unnecessary interventions.

The path forward

If the cause of the problem is that we do not have validated targets, surrogate endpoints or accurate diagnostic tests, then the solutions must address these with a greater sense of rigor and urgency than in the past.

Why is there no sense of urgency? As a statistics colleague, Weichung “Joe” Shi, once said, “The problem with prevention is that nothing happens”. In contrast, the success of statins is based on “something happening” i.e., a decrease in serum cholesterol. Similarly, dual-energy x-ray absorptiometry, commonly known as the Dextra scan, allowed people to measure their risk of developing osteoporotic fractures based on degree of bone loss and to select patients most likely to benefit from bisphosphonates, which are by no means perfectly safe. Similar pharmacodynamic endpoints for cancer interception, such as decreases in the quantity of a monoclonal immunoglobulin in smoldering myeloma, therefore, would be highly desirable

Finally, with the mounting costs of healthcare becoming problematic even in the wealthiest countries, it is our responsibility to make the healthcare economic case for preventing, intercepting and curing disease, rather than managing chronic disease for a lifetime.
References

7. Finkel R. The 5 most profitable medications ever produced. Drugsdbcom. 2014(May 23,).
<table>
<thead>
<tr>
<th>Table 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer Interception Manifesto</td>
</tr>
<tr>
<td>Cancers develop over many years, often decades</td>
</tr>
<tr>
<td>A cancer diagnosis is preceded by premalignancy</td>
</tr>
<tr>
<td>Cancers become more complex over time</td>
</tr>
<tr>
<td>Complexity makes cancers more adaptable</td>
</tr>
<tr>
<td>Adaptable cancers are harder to eradicate</td>
</tr>
<tr>
<td>Early disease is less complex and therefore less adaptable</td>
</tr>
<tr>
<td>Treating cancer and premalignancy earlier leads to better outcomes for patients</td>
</tr>
</tbody>
</table>

Legends to Figure

Figure 1. The number of clinical trials conducted between 1973 and 2011 in decreasing order of 5-year overall survival. Adapted with permission from Budish et al, 2015 (2).
Figure 1

Number of Clinical Trials

- Recurrent: 17679
- Metastatic: 11923
- Regional: 10404
- Localized: 6083
- In situ: 152
- Prevention: 523
Disease Interception: Myths, mountains, and mole hills

William N. Hait and Peter F Lebowitz

Cancer Prev Res Published OnlineFirst May 2, 2016.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/1940-6207.CAPR-16-0049</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author Manuscript</td>
<td>Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.</td>
</tr>
</tbody>
</table>

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerpreventionresearch.aacrjournals.org/content/early/2016/04/30/1940-6207.CAPR-16-0049. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.